CS 423
Operating System Design:
Segmentation & Paging
Feb 05

Ram Kesavan

Logistics

MPO: Due on 02/09 11:59pm CT
MP1:
Will get posted by tonight
Walkthrough by Gabriella on 2/10
4Cr: Linux APIs paper; due by 2/10 2pm CT
Unsubmitted reviews will hurt your participation grade

Google Apps @lllinois problems

AGENDA /LEARNING OUTCOMES

Memory virtualization
Segmentation: technique used by older systems
Pros and cons?

Paging & modern systems

RECAP

OKB

1KB

2KB

15KB

16KB

ABSTRACTION: ADDRESS SPACE

Virtual Memory

Program Code

Heap

(free)

Stack

Virtual Address Space:
Each process has its
own address range

OS provides that
lllusion by mapping to
physical memory

OKB

16KB

32KB

48KB

64KB

80KB

96KB

112KB

128KB

Physical Memory

Operating System
(code, data, etc.)

(free)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

HOW TO VIRTUALIZE MEMORY

Problem: Addresses are “hardcoded” into process binaries
How to avoid collisions?

End of Recap

O K w DN

Mechanisms for Virtualization

Time Sharing
Static Relocation
Base
Base+Bounds

Segmentation

N

Limited practicality, has
many problems

More practical, still has
some problems

x86 and Linux: Paging, TLB, Efficient Page Tables

SEGMENTATION

Divide VM address space into logical segments
o Each segment corresponds to logical entity in address space

(code, stack, heap) VM layout

Each segment with its own base + bounds register

Each segment can independently:

1. Be placed in physical memory
2. Grow and shrink (not code & static data) *
3. Be protected (read/write/exec) ‘

Heap

SEGMENTED ADDRESSING

Process should specify segment and offset within segment
How does process designate a particular segment?
o Use portion of logical/VM address
W MSBs of logical address => segment

B LSBs of logical address => offset within segment

Segmentation Implementation

MMU contains Segment Table (per process)
e Each segment has own base and bounds, protection bits
e Example: |6KBVM address space = |4 bit logical address with 4 segments

How many bits

Segment Base Bounds R W
for segment?

00 (code) 32KB 2KB 1 0

01 (heap) 34KB 3KB 1 1
How many bits |11 (stack) |[28KB 2KB 11
for offset? 10 (unused) |0x0000 |0x000 0 0

Example Translations

Segment |Base Bounds R W
0 32KB 2KB 10
1 34KB 3KB 11
3 28KB 2KB 11
2 OXx0000 |0x000 0 0

Translate logical (in hex) to physical
Ox1108:
Bottom 12 bits =

Offset =
Is Offset < Bounds?
Top 2 bits =

Segment number:
Physical addr:

base + offset =

O0KB

1KB

2KB

3KB

4KB

5KB

6KB

7KB

14KB

15KB

16KB

VIRTUAL->PHYSICAL TRANSLATION

Program Code
0KB
16KB
Heap
1 32KB
(iree) 48KB
64KB
Stack

Operating System

(not in use)
t

Slack

(not in use)
Code

Heap

)

(not in use)

Heap Segment
Virtual address range : 4 KB to 7 KB
Physical address range: 34 KB to 37 KB

Virtual address 6 KB (hex: 0x1800)
Which segment!?
What is the offset?

How does the MMU translate that?

Physical address = Base + Offset

0KB

1KB

2KB

3KB

4KB

5KB

6KB

7KB

14KB

15KB

16KB

Program Code

Heap

(iree)

Stack

STACK ADDRESS TRANSLATION

OKB

16KB

32KB

48KB

64KB

Operating System

(not in use)
t

Slack

(not in use)
Code

Heap

)

(not in use)

Stack Segment
Virtual address range : 16 KB to 14 KB
Physical address range: 28 KB to 26 KB

Virtual address |5 KB (hex: 0x3C00)
Which segment!?
What’s the offset?

How does the MMU translate that?

Physical address =?

SEGMENTATION IMPLEMENTATION

MMU contains Segment Table (per process)
e Each segment has own base and bounds, protection bits
e Example: |6KBVM address space = |4 bit logical address with 4 segments

Segment Base Bounds R W
00 (code) 32KB 2KB 1 0
01 (heap) 34KB 3KB 11
11 (stack) 28KB 2KB 11
10 (unused) |0x0000 0x000 0O O

SEGMENTATION: ADVANTAGES

Enables sparse allocation of address space

Stack and heap can grow dynamically

e Heap: If no data on free list, dynamic memory allocator requests more from
OS (e.g., UNIX: malloc lib calls sbrk())

e Stack: OS recognizes reference outside legal segment, extends stack
implicitly

Different protection for different segments
e Enables sharing of selected segments (2 processes share code)

e With no write permission for code segment

Supports dynamic relocation of each segment

SEGMENTATION: DISADVANTAGES

Each segment must be allocated contiguously

Physical memory gets fragmented

May not have sufficient physical memory for large
segments?

OKB

8KB

16KB

24KB

32KB

40KB

48KB

56KB

64KB

Not Compacted

Operating System

(not in use)

Allocated

(not in use)

Allocated

(not in use)

Allocated

COMPACT & REARRANGE SEGMENTS

Compacted
. Not Compacted BB p
8KB Operating System 8KB Operating System
16KB 16KB
(not in use)
24KB 24KB
Allocated Allocated
32KB 32KB
(not in use)
40KB Allocated 40KB
48KB \ 48KB
(BhILSe) (not in use)
56KB 56KB
Allocated
64KB 64KB

PAGING
(most modern systems including Linux use this)

PAGING

Goal: Eliminate requirement that segment is contiguous

Eliminate external fragmentation

|dea:
Divide address spaces and physical
memory into fixed-sized pages/frames

Size: 2", Example: 4KB

Process |

=il

Process 2

Logical View

Process 3

Physical
View

TRANSLATION of 4KB PAGE ADDRESS

How to translate logical address to physical address?
o MSBs of virtual address => page number
o LSBs bits of virtual address => offset within page

20 bits |2 bits .
32 bits
agse number age offset
P g* Poe Logical address

translate l

frame number page offset Physical address

ADDRESS FORMAT

Page Size Low Bits (offset) N-Bit Address High Bits (vpn) Virt Pages
|6 bytes |0
| KB 20
| MB 32
512 bytes 16
4 KB 32

VIRTUAL -> PHYSICAL PAGE MAPPING

VPN offset # bits in VPN
#bits in virtual -— - L
address need not 0 | 0 | > # bits in PPN?
be equal to #bits \
in physical address Addr Mapper What does this mean?
i T | L O] V] O] 1 Jisinverse possible?
PPN offset

How should OS translate VPN to PPN/PFN?

LINEAR PAGE TABLE

What is an obvious data structure?

Linear page table (array)
Indexed by VPN
Yields PFN (Physical Frame Number)

A Single PTE (Page Table Entry):

VPN

2An

PTE

3130292827 262524232221 20191817 16151413 121110 9 8 7 6 5 4 3 2 1 0
b= ()] g

o DI=a
PFN o|g <8§3E'

ADVANTAGES OF PAGING

No external fragmentation

o A page can be placed in any frame in physical memory
Fast to allocate and free

o Alloc: No searching for suitable free space

o Free: No need to coalesce/compact free space

Simple to swap-out portions of memory to disk (later lecture)
o Page size matches disk block size!
o Can run process when some pages are on disk
o Add “present” bit to PTE

HOW BIG IS A PAGE TABLE?

Assume 32-bit address
Assume 4KB pages

Assume 4 byte page table entries (PTE)

How large is PT for each process?

Implications?

IMPLICATIONS

Page tables may be substantial
o Simple page table: requires PTE for all pages in address space
Entry needed even if page not allocated ?

Additional memory reference to page table
o Very inefficient, so...
o ...page table must be stored in memory
o MMU stores only base address of page table

Could choose larger page size
o Leads to (internal) fragmentation

Next Lecture: Paging and TLBs

