
CS 423
Operating System Design:

Segmentation & Paging
Feb 05

Ram Kesavan

Acknowledgement: Prof. Shivaram Venkataraman (Wisconsin)

Logistics

MP0: Due on 02/09 11:59pm CT

MP1:

Will get posted by tonight

Walkthrough by Gabriella on 2/10

4Cr: Linux APIs paper; due by 2/10 2pm CT

Unsubmitted reviews will hurt your participation grade

Google Apps @Illinois problems

AGENDA / LEARNING OUTCOMES

Memory virtualization
Segmentation: technique used by older systems
Pros and cons?
Paging & modern systems

RECAP

ABSTRACTION: ADDRESS SPACE

Virtual Address Space:
Each process has its
own address range

OS provides that
Illusion by mapping to
physical memory

Virtual Memory Physical Memory

HOW TO VIRTUALIZE MEMORY

Problem: Addresses are “hardcoded” into process binaries
How to avoid collisions?

End of Recap

Mechanisms for Virtualization

1. Time Sharing
2. Static Relocation
3. Base
4. Base+Bounds

5. Segmentation

Limited practicality, has
many problems

More practical, still has
some problems

x86 and Linux: Paging, TLB, Efficient Page Tables

SEGMENTATION

Divide VM address space into logical segments
○ Each segment corresponds to logical entity in address space
 (code, stack, heap)

Each segment with its own base + bounds register
Each segment can independently:
1. Be placed in physical memory
2. Grow and shrink (not code & static data)
3. Be protected (read/write/exec)

Stack

Code

Heap

VM layout

SEGMENTED ADDRESSING

Process should specify segment and offset within segment
How does process designate a particular segment?

○ Use portion of logical/VM address
■ MSBs of logical address => segment

■ LSBs of logical address => offset within segment

Segmentation Implementation

Segment Base Bounds R W

00(code) 32KB 2KB 1 0

01(heap) 34KB 3KB 1 1

11(stack) 28KB 2KB 1 1

10(unused) 0x0000 0x000 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits
• Example: 16KB VM address space = 14 bit logical address with 4 segments

How many bits
for segment?

How many bits
for offset?

Example Translations

Segment Base Bounds R W

0 32KB 2KB 1 0

1 34KB 3KB 1 1

3 28KB 2KB 1 1

2 0x0000 0x000 0 0

Translate logical (in hex) to physical
0x1108:
Bottom 12 bits =

Offset =
Is Offset < Bounds?
Top 2 bits =

Segment number:
Physical addr:

base + offset =

VIRTUAL->PHYSICAL TRANSLATION
Heap Segment

Virtual address range : 4 KB to 7 KB
Physical address range: 34 KB to 37 KB

Virtual address 6 KB (hex: 0x1800)
 Which segment?

What is the offset?

How does the MMU translate that?

Physical address = Base + Offset
 =

STACK ADDRESS TRANSLATION
Stack Segment

Virtual address range : 16 KB to 14 KB
Physical address range: 28 KB to 26 KB

Virtual address 15 KB (hex: 0x3C00)
Which segment?
What’s the offset?

How does the MMU translate that?

Physical address =?

SEGMENTATION IMPLEMENTATION

Segment Base Bounds R W Grows?

00(code) 32KB 2KB 1 0 1

01(heap) 34KB 3KB 1 1 1

11(stack) 28KB 2KB 1 1 0

10(unused) 0x0000 0x000 0 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits
• Example: 16KB VM address space = 14 bit logical address with 4 segments

SEGMENTATION: ADVANTAGES

Enables sparse allocation of address space
Stack and heap can grow dynamically
● Heap: If no data on free list, dynamic memory allocator requests more from

OS (e.g., UNIX: malloc lib calls sbrk())
● Stack: OS recognizes reference outside legal segment, extends stack

implicitly

Different protection for different segments
● Enables sharing of selected segments (2 processes share code)
● With no write permission for code segment

Supports dynamic relocation of each segment

SEGMENTATION: DISADVANTAGES

Each segment must be allocated contiguously

Physical memory gets fragmented

May not have sufficient physical memory for large
segments?

COMPACT & REARRANGE SEGMENTS

PAGING
(most modern systems including Linux use this)

PAGING

Goal: Eliminate requirement that segment is contiguous
 Eliminate external fragmentation

Idea:
Divide address spaces and physical
memory into fixed-sized pages/frames

Size: 2n, Example: 4KB

Process 1 Process 2

Logical View

Ph
ys

ica
l

Vi
ew

Process 3

TRANSLATION of 4KB PAGE ADDRESS

How to translate logical address to physical address?
○ MSBs of virtual address => page number
○ LSBs bits of virtual address => offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

Address Format

Page Size Low Bits (offset) N-Bit Address High Bits (vpn)

16 bytes 10

Virt Pages

1 KB 20
1 MB 32

512 bytes 16
4 KB 32

VirtUAL -> Physical PAGE Mapping

How should OS translate VPN to PPN/PFN?

0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

#bits in virtual
address need not
be equal to #bits
in physical address

bits in VPN

> # bits in PPN?

What does this mean?

Is inverse possible?

LINEAR PAGE TABLE

What is an obvious data structure?
Linear page table (array)
Indexed by VPN
Yields PFN (Physical Frame Number)

PTE
0

2^n
A Single PTE (Page Table Entry):

VPN

ADVANTAGES OF PAGING

No external fragmentation
○ A page can be placed in any frame in physical memory

Fast to allocate and free
○ Alloc: No searching for suitable free space
○ Free: No need to coalesce/compact free space

Simple to swap-out portions of memory to disk (later lecture)
○ Page size matches disk block size!
○ Can run process when some pages are on disk
○ Add “present” bit to PTE

HOW BIG IS A PAGE TABLE?

Assume 32-bit address
Assume 4KB pages

Assume 4 byte page table entries (PTE)

How large is PT for each process?

Implications?

IMPLICATIONS

Page tables may be substantial
○ Simple page table: requires PTE for all pages in address space
 Entry needed even if page not allocated ?

Additional memory reference to page table
○ Very inefficient, so…
○ …page table must be stored in memory
○ MMU stores only base address of page table

Could choose larger page size
○ Leads to (internal) fragmentation

Next Lecture: Paging and TLBs

