CS 423
Operating System Design:
Virtualization: CPU & Memory
Feb 03

Ram Kesavan

Logistics

MPO: Due on 02/09 11:59pm CT

4Cr: UNIX paper summary (was) due 2pm CT today

This lecture:
Finish up CPU virtualization

Start memory virtualization - memory layout and translation

AGENDA / LEARNING OUTCOMES

CPU virtualization
Recap scheduling policies
Proportional share scheduling
Brief look at Linux scheduler

Memory virtualization
What is the need for memory virtualization?

Basics of virtualizing memory

RECAP: Scheduling Policies

Workload

Timelines
JOB arrival run
AB CAB CABABAAAA
B 0 20

c s 10
Schedulers:
FIFO

SJF
STCF

RR

RECAP: MLFQ

[High Priority] Q8 — @ —
Q7

Rules for MLFQ

Rule I:If pri(A) > pri(C),A runs

Q6 Rule 2: If pri(A) == pri(B), A & B run in RR

@5 Rule 3: All jobs start at top pri

as—(c)

Q3 Rule 4: If job uses whole slice™, demote job.
Else, stay at level;

Q2 4a*time allotment

Rule 5: After time period S, boost all jobs top pri

Proportional Share in Scheduling

Metrics so far: turnaround time, response time
New metric: proportional-share

E.g., if Job A has paid 5x more price than Job B, then A is 5 times more likely to
get the CPU than B

If both paid equally, A and B are equally likely to get the CPU

Lottery Scheduling: Probabilistically Proportional

Give each job tickets; #tickets based on priority A :igkets
Conduct a lottery every period B 20

Winner gets scheduled on CPU tickets
C 30

tickets

Lottery: Generate a random number 0 <=r < 60; schedule:
Aif0<=r<10

Bif 10 <=r <30

Cif30<=r<60

Probabilistic: but the longer they run, closer we get to the 1:2:3 proportioning

Implementing Lottery Scheduling

int counter = 0;

int winner = getrandom(@, totaltickets);

node_t *current = head;

while (current) {
counter += current->tickets;
if (counter > winner) break;
current = current->next;

}
// current gets to run
Job A Job B Job C
head —>(|) -’(I) -’(|00)

Who runs if winner is:
50

350

0

Job D
@00) (100

Job E =P null

Lottery Scheduling (Misc)

A job can transfer its ticket to another
When is this useful?

If all jobs have the same #tickets, isn’t that just RR?

DEADLINE BASED SCHEDULING

Used in real-time systems (RTOS)
Each job gets a deadline
Classic policy: EDF (earliest deadline first)
But works only when system is not overloaded

Eg: It's Mon, 3 HWs due T, W, and Thu and each takes 1.5 days

Linux CFS (Completely Fair Scheduler)

Linux scheduler has evolved to CFS
- multi-core & variety of applications
Each job accumulates vruntime whenever it runs
CFS picks job with lowest vruntime
CFS uses sched_latency to decide time slice per run
- time_slice = max(min_granularity, (sched_latency)/(#runnable-jobs))
Params: sched_latency = 48ms, min_granularity = 6ms
Eg. 1: If 3 jobs, what is each job’s time_slice?

Eg. 2: If 10 jobs, what is each job’s time_slice?

Linux CFS More

UNIX pri: -20 < nice <= 19 translates to a weight, which biases the math

weight
time_slice;, = max(min_granularity, — Ik, sched_latency
n—1 .
> i weight;
, weight ,
vruntimep+ = - * runtimey
weighty,

Runnable jobs kept in a (balanced) red-black tree, ordered by vruntime
All updates are O(log n)
Picking job with lowest vruntime
Adjusting vruntime of a job
2 Problems:
(1) Very low vruntime for a job that just became runnable
(2) What about multi core systems?

CPU VIRTUALIZATION SUMMARY

Mechanism
Process abstraction
System call for protection
Context switch to time-share the CPU
Policy
Metrics: turnaround time, response time, proportional share
Various policies: eg. MLFQ

Linux scheduling

DIGRESSION: Common Design Pattern in Systems

A single struct lives in many structures at
the same time.

Eg. The per-process task struct

1. RunQ structure for scheduler
2. Lookup by PID

3. Parent<->child relationships

By using pointers

MEMORY VIRTUALIZATION

Create the illusion that each process has its own memory

Goals:

1. Sharing, but with...

2. ...Transparency

3. Efficiency: minimize memory and CPU-cycles wastage
4. Protection: No process can read/write another’s memory

OKB

64KB

max

BACK IN THE DAY...

Operating System
(code, data, etc.)

Current Program
(code, data, etc.)

Early systems did not virtualize memory
Uniprogramming: One process at a time, with
no protection

OKB

1KB

2KB

15KB

16KB

ABSTRACTION: ADDRESS SPACE

Virtual Memory

Program Code

Heap

(free)

Stack

Virtual Address Space:
Each process has its
own address range

OS provides that
lllusion by mapping to
physical memory

OKB

16KB

32KB

48KB

64KB

80KB

96KB

112KB

128KB

Physical Memory

Operating System
(code, data, etc.)

(free)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

OKB

1KB

2KB

15KB

16KB

WHAT IS IN ADDRESS SPACE?

Program Code

Heap

(free)

Stack

the code segment:
where instructions live

the heap segment:
contains malloc’d data
dynamic data structures

(it grows downward)

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

Static: Code and global variables
Dynamic: Heap & Stack

"QT:Why put stack and heap at the
opposite ends!

Q2:What if the process has multiple
threads!?

STACK ORGANIZATION

. _ SP demarcates allocated from free space
main() : alloc(main) Call func: Increment pointer
call A() : alloc(A) Return from func: Decrement pointer

call B() : alloc(B)
exit B() : free(B)

call C() : alloc(C)
exit C() : free(C)
exit A() : free(A)

exit main(): free(main); 15KB

No fragmentation!

Stack

16KB

Possible locations:
static data/code, stack, heap

int x;
int main(int argc, char *argv[]) {
int y;
int* z = malloc(sizeof(int)););
}
X
main
y

Why do programmers need dynamic memory?

We don’t always know (at compile time) how much memory is needed?

Complex data structures: trees, graphs, lists, maps

on-demand: Eg. void *ptr = malloc(size(struct my struct))
malloc returns contiguous space

pass around to other functions

free(ptr) when it's not needed

Key observation:

1.
2.
3.

Each allocation is of custom/specified size
But, the free function somehow knows what that size it!
If “leaked”, all allocations freed when process eventually dies

HEAP ORGANIZATION

Allocate from any random location: malloc(), new() 16 bytes

e Heap memory consists of allocated and free
areas (holes)

24 bytes

e Order of mallocs and frees is unpredictable
Adv: works for all data structures |2bytes
Disadv: Can result in fragmentation 16 bytes

How to allocate 20 (contiguous) bytes!?

What is OS’s role in managing the heap!?

Free

Alloc

Free

Alloc

OS gives out big chunks of free memory & library manages the individual

allocations and frees
Interesting Topic: Slab Allocators

MEMORY ACCESS

#include <stdio.h>
#include <stdlib.h>
Ox10: movl Ox8(%rbp), %edi

int main(int argc, char *argv(]) { ox18: addl $0x3, %edi
int X; . o/ 12 o
X=X+ 3: Ox20: movl %edi, ©x8(%rbp)
}

%rbp is the frame pointer:
points to base of current stack frame

MEMORY ACCESS

Initial %rip = 0x10 How many memory accesses!’

%rbp = 0x200

To what addresses!?

mp 0x16: movl x8(rbp), %edi Chat with neighbors for 2 mins.
Ox18: addl $0x3, %edi
0x20: movl %edi, Ox8(%rbp)

%rbp is the frame pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter)

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Compiler “hardcodes” the VM addresses into the binaries it generates
How to avoid collisions?

Possible Solutions for Mechanisms (in today’s class):
Time Sharing, Static Relocation, Base, Base+Bounds

Unrealistic assumptions:

1. Each process gets the same sized VM address space, which is smaller than the
physical memory on the machine
2. VM address space can be mapped contiguously in physical memory

1. TIME SHARE MEMORY

MMMMMM

MMMMMM

.........................

Time Sharing Memory

PROBLEMS WITH TIME SHARING?

Ridiculously poor performance

Better Alternative: space sharing!
Divide physical memory across processes
Rest of solutions all use space sharing

LOADER: STATIC RELOCATION

OS rewrites each program before loading it into memory (as a process)

Each rewrite for a process uses different addresses and pointers

Need to change jumps, loads of static data

0x1010:
0x1013:

rewy 0x1019:

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

\ 0x3010:
rewrite 0x3013:

0x3019:

movl 0x8(%rbp), %edi
addl $0x3, %edi
movl %edi, 0x8(%rbp)

movl 0x8(%rbp), %edi
addl $0x3, %edi
movl %edi, 0x8(%rbp)

Static Layout in Memory

0x1000

process |

0x3000

process 2

Program Code

Heap

free)

tack

Program Code

Heap

free)

Etack

0x1010:
0x1013:
0x1019:

0x3010:
0x3013:
0x3019:

movl 0x8(%rbp), Y%edi
addl $0x3, %edi
movl %edi, 0x8(%rbp)

movl 0x8(%rbp), %edi
addl $0x3, %edi
movl %edi, Ox8(%rbp)

DYNAMIC RELOCATION

Goal: Protect processes from one another

Requires hardware support
o Memory Management Unit (MMU)

MMU dynamically changes process address at every memory reference
o Process generates logical or virtual address (in its address space)
o MMU converts to physical or real address

Process runs here OS controlled MMU

4P MMU 4P

CPU

Memory

Logical address Physical address

Dynamic Relocation: BASE REG

All VM addresses in compiled binary are offsets from zero
HW translates every VM address for a user process

MMU adds base register to VM address => physical address

MMU

logical
address

physical
address

PER-PROCESS BASE REG

Each process has a unique value in its base register

MMU mapping of VM->PM requires only an addition
Fast & efficient

Also, OS can relocate a process!

Find free contiguous space in physical memory
Don’t let the process run for a bit
Copy the process entirely to the new location

Change the process’s base register

Virtual

Pl:load 100,R1

P2:load 100, R1 Assume addresses
are in decimal format

0 KB
| KB

2 KB
P2:load 1000, R2

Pl:load 1000, R2

3 KB

4 KB

5 KB

6 KB

Visual Example of DYNAMIC RELOCATION

DYNAMIC with BASE+BOUNDS

|dea: limit the address space with a bounds register
Base Reg: smallest physical addr (or starting location)
Bounds Reg: size of this process’s virtual address space

o The largest physical address (base + size)

OS can kill process if it loads/stores beyond bounds

IMPLEMENTATION OF BASE+BOUNDS

Translate on every memory access in user mode
e MMU compares VM address to bounds register
If VM address is greater, then errors
e Else, MMU adds base reg to VM address => physical address

logical
address

physical
address

0 KB
| KB base register = 1024
2 KB bounds register = 1024
3 KB
4KB

5 KB

6 KB

Does the bounds reg contain a physical or virtual address?

HW SUPPORT FOR DYNAMIC RELOCATION

Restricted (user) mode: MMU
o performs translation of logical address to physical address

Privileged (kernel) mode: OS can
o To manipulate contents of MMU
o Needed during context switching: load new base+bounds regs
o Allows OS to access all of physical memory

Managing Processes with Base and Bounds

For context-switch: Add base and bounds registers to PCB
Steps

o Change to privileged mode

o Save base and bounds registers of old process

o Load base and bounds registers of new process

o Change to user mode and jump to new process

Protection requirement
e User process cannot change base and bounds registers

Base and Bounds Advantages

Provides protection (both read and write) across address spaces
Supports dynamic relocation

Can place process initially at a physical address...

...but, can move it to a different physical address

Simple, inexpensive implementation: Few registers, little logic in MMU
Fast: Add and compare in parallel

Base and Bounds DISADVANTAGES

Disadvantages

o Each process must be allocated contiguously in physical memory

Must allocate memory that may not be used by process

o No partial sharing: Cannot share parts of address space

0

Heap

Y
A

2.1

NEXT LECTURES...

Relax assumptions:

1. VM address space < physical memory address space
2. VM address space is mapped contiguously in physical memory

Segmentation

Paging

Segmentation + Paging
Multi-level Page Tables
TLBs

