
CS 423
Operating System Design
CPU Scheduling Policies

Jan 27
Ram Kesavan

1Figures and slides ack: Prof. Shivaram Venkataraman (Wisconsin)

Logistics

Next lecture: TAs will walkthrough MP0
Everyone to use EngrIT VMs for MPs

4Cr: 1st paper has been added to course web-page
Review due before start of Feb3rd class (2pm CST)

This lecture:
1. Recap scheduling mechanism

2. Scheduling policies

2

RECAP: SCHEDULING MECHANISM

Process: abstraction to virtualize the CPU

Use time sharing to switch between processes

When and to which process to switch – policy

How to switch processes – mechanism

How many processes can be in each state simultaneously?

3

RECAP: SCHEDULING MECHANISM

Limited Direct Execution (LDE)

Natively run the program on CPU

Use system calls for restricted ops, such as accessing devices

Use timer interrupt to grab control from user process

4

5

RECAP: CPU STATE OF A PROCESS

6

RECAP: SYSCALL

LEARNING OUTCOMES

Scheduling policies
How does the OS decide which process to run?
What are some of the metrics to optimize for?
What are some of the policies: FCFS, SJF, STCF, RR, MLFQ
What to do when OS doesn’t have complete information?
How to handle mix of interactive and batch processes?

7

Terminology
Workload: set of jobs (arrival time, run_time)

Job: process that runs for some time period
Processes move between READY & BLOCKED

Scheduler: Decide which READY job to run

Metric: measure of scheduling quality (e.g., turnaround time,
response time, fairness)

8

APPROACH

Assumptions
about the
workload

Scheduling
policy

Pick one or
more

Metric(s)

9

METRIC 1: TURNAROUND TIME

Turnaround time = completion_time - arrival_time

Example:
Process A arrives at time t = 10, finishes t = 30
Process B arrives at time t = 10, finishes t = 50

Turnaround time
A = 20, B = 40

Average = 30

10

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

11

FIFO / FCFS

Job arrival(s) run time (s) turnaround (s)
A ~0 10
B ~0 10
C ~0 10

Average
Turnaround
Time =

12

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

How will FIFO perform without this assumption?

13

When FIFO is Bad

Average
Turnaround Time?

Job Arrival(s) run time (s)
A ~0 100
B ~0 10
C ~0 10

What is one schedule
that could be better?

14

CHALLENGE

Turnaround time suffers when short jobs must wait for long jobs

Convoy effect: e.g., everyone slowed down by a slow vehicle in a
single-lane road

New scheduler:
SJF (Shortest Job First)
Choose job with shortest run-time!
(note: we assume the OS knows the time for each job)

15

SHORTEST JOB FIRST (SJF)

Job Arrival(s) run time (s) Turnaround (s)
A ~0 100
B ~0 10
C ~0 10

Average
Turnaround
Time

16

SJF Theory

SJF is provably optimal for minimizing turnaround time (assuming no
preemption)

Intuition:

Moving shorter job before long job improves the turnaround time of the short
job more than it harms the turnaround time of the long job

17

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

18

Job Arrival(s) run time (s)
A ~0 100
B 10 10
C 10 10

What will be the schedule with SJF?

Take a min, chat with neighbors, and sketch the schedule and calculate the
turnaround time

19

Job Arrival(s) run time (s)
A ~0 100
B 10 10
C 10 10

Average
Turnaround

Time ?

TA time(A):
TA time(B):
TA time(C):

Avg = ?
20

PREEMPTIVE SCHEDULING

Previous schedulers:
FIFO and SJF are non-preemptive
Only schedule new job when previous job voluntarily relinquishes CPU

(after it exits)

Preemptive: Schedule different job by taking CPU away from running job
STCF (Shortest Time-to-Completion First) - preemptive version of SJF
Always run job that will complete the quickest

21

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

22

PREEMPTIVE STCF

Job Arrival(s) run time (s)
A ~0 100
B 10 10
C 10 10

Average
Turnaround

Time

(10 + 20 + 120)/ 3
= 50s

23

PREEMPTIVE STCF

Job Arrival(s) run time (s)
A ~0 15
B 10 10
C 10 10

What is the schedule and turnaround time here?

24

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

25

Assume A and B need 50ms compute each
But…A issues an IO (that takes 10ms) after running for 10ms
B issues no IOs

STCF: if not IO-aware, can pick A initially

If you consider the entire process A

as a single job

NOT IO
AWARE

26

I/O AWARE SCHEDULING

Treat Job A as 5 separate 10ms sub-jobs
When one sub-job completes I/O, another sub-job is ready

Each 10ms
sub-job of A is
shorter than Job B

With STCF,
Job A preempts Job B

27

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

28

What if you don’t know job runtime?

For metric of turnaround time:
If jobs have same length:

Then FIFO works well

If jobs have different lengths:

SJF is better than FIFO

Key question: How can OS get short jobs to complete first if OS doesn’t
know which are short?

29

Solution: Round Robin (RR)

Idea: alternate ready processes for a fixed-length time (called slice or quantum)

Preemptive

Short jobs will finish after fewer time slices

Short jobs will finish sooner than long ones

30

Different Job Lengths and Turnaround Time

All arrive at t=0 but A arrives a little earlier (so gets scheduled 1st in FIFO)
Turnaround time in RR: ?

Turnaround time in SJF: ?

Say RR uses 1ms timeslice

31

Different Job Lengths and Turnaround Time

All arrive at t=0 but A arrives a little earlier (so gets scheduled 1st in FIFO)

Turnaround time in RR: B=>5, C=>6, A=>6+8=14; (5+6+14)/3 = 8.333

Turnaround time in SJF: (2+4+14)/3 = 6.667

For variable length jobs, RR gets close to SJF in turnaround time and is better than FIFO

When you don’t know job lengths, RR does reasonably well when job lengths are different 32

ROUND ROBIN SCHEDULER

When is RR bad in terms of turnaround time?

When jobs are equal length…

33

ROUND ROBIN

Average Turnaround Time

(5 + 10 + 15)/3 = 10s (13 + 14 + 15)/3 = 14s

34

Batch vs Interactive

Turnaround time is a good metric for CPU-bound programs

It is not a good metric for interactive programs

35

METRIC 2: RESPONSE TIME

Response time = first_run_time - arrival_time

B’s turnaround: 20s

 B’s response: 10s

A

40 60 800 20

[B arrives]

B

36

ROUND ROBIN

Average Response Time

(0 + 5 + 10)/3 = 5s (0 + 1 + 2)/3 = 1s

Average Turnaround Time

(5 + 10 + 15)/3 = 10s (13 + 14 + 15)/3 = 14s
37

TRADE-OFFS

Round robin increases turnaround time, decreases response time
Trade-off: fairness vs turnaround time

Tuning challenges:
What is a good time slice?
What is the overhead in context switching? (hint: not just saving

and restoring state)

Round robin: doesn’t have to know the job length

Short jobs will complete before long jobs (like SJF)
38

ASSUMPTIONS

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)
5. Run-time of each job is known (perfect knowledge)

39

MULTI-LEVEL FEEDBACK QUEUE

40

MLFQ: GENERAL PURPOSE SCHEDULER

Must support two job types with distinct goals
-“interactive” programs care about response time
-“batch” programs care about turnaround time

Approach:
Multiple levels of round-robin
Higher levels have higher priority
Processes are preemptable

41

MLFQ EXAMPLE

“Multi-level” – Each level is a
queue

Rules for MLFQ

Rule 1: If priority(A) > Priority(B)
A runs

Rule 2: If priority(A) == Priority(B),
A & B run in RR

42

CHALLENGES

How to set priority?
Does a process stay on one queue or move across queues?

Approach:
Use recent past behavior of process to predict future
Common approach in systems when don’t have perfect knowledge

If interactive recently, will likely be interactive in the near future

43

MORE MLFQ RULES

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process
(longer time slices at lower priorities)

44

ONE LONG JOB

Q2

Q0

Moves down again
Q1

Starts at top
Uses whole slice
Moves down

45

INTERACTIVE SHORT PROCESS JOINS

46

Q2

Q2

Q2

0 50 100 150

MLFQ PROBLEMS?

Q2

Q1

Q0

What is the problem
with this schedule ?

47

AVOIDING STARVATION

Rule 5: After some
time period S, move all
the jobs in the system
to the topmost queue.

48

GAMING THE SCHEDULER ?

Q2

Q1

Q0

Job could trick scheduler by doing I/O
just before time-slice end

When high-pri job is blocked, low pri
job gets to run but when ready, it
preempts the low-pri job

49

GAMING THE SCHEDULER ?

Q2

Q1

Q0

Job could trick scheduler by doing I/O just
before time-slice end

Rule 4*: Account for total run time at
priority level
Downgrade when exceed threshold

50

MLFQ Summary

Works well with a mix of compute-intensive and interactive jobs
Can finish shorter jobs earlier

5 rules to implement MLFQ

Versions of it are used in BSD, Sun Solaris, Windows NT, and
Linux.

But multi-core versions!

51

FAIRNESS: Quick Detour

How to define? 4 kids share a cake, each gets 25%
If one kid can eat only 10%, is it fair to force her to eat 25%?

Min-max Fairness: Least demanding gets fair share first
Kid1 takes 10%, And her 15% is divvied up: others kids

entitled to 30% fair share

Topic useful for any practical system design:

Queueing Theory
52

SUMMARY

Scheduling Policies
Understand workload characteristics like arrival, CPU, I/O
Scope out goals, metrics (turnaround time, response time)
Metrics: Latency vs throughput

Real-life schedulers are complicated beasts
Lots of trade-offs based
Past behavior is good predictor of future behavior

53

