CS 423
Operating System Design
CPU Scheduling Policies
Jan 27

Ram Kesavan

Figures and slides ack: Prof. Shivaram Venkataraman (Wisconsin)

Logistics

Next lecture: TAs will walkthrough MPO
Everyone to use EngrIT VMs for MPs

4Cr: 1st paper has been added to course web-page
Review due before start of Feb3rd class (2pm CST)

This lecture:
1. Recap scheduling mechanism

2. Scheduling policies

RECAP: SCHEDULING MECHANISM

Process: abstraction to virtualize the CPU

Use time sharing to switch between processes

Descheduled When and to which process to switch — policy
——> | Ready
Scheduled How to switch processes — mechanism

1/O: |n|t|a /I/O: done

Blocked

How many processes can be in each state simultaneously?

RECAP: SCHEDULING MECHANISM

Limited Direct Execution (LDE)
Natively run the program on CPU

Use system calls for restricted ops, such as accessing devices

Use timer interrupt to grab control from user process

RECAP: CPU STATE OF APROCESS

RECAP: SYSCALL

LEARNING OUTCOMES

Scheduling policies
How does the OS decide which process to run?

What are some of the metrics to optimize for?

What are some of the policies: FCFS, SJF, STCF, RR, MLFQ
What to do when OS doesn’t have complete information?
How to handle mix of interactive and batch processes?

Terminology
Workload: set of jobs (arrival time, run_time)

Job: process that runs for some time period
Processes move between READY & BLOCKED

Scheduler: Decide which READY job to run

Metric: measure of scheduling quality (e.g., turnaround time,
response time, fairness)

APPROACH

Assumptions Pick one or
about the more

workload Metric(s)
Scheduling
policy

METRIC 1: TURNAROUND TIME

Turnaround time = completion time - arrival time

Example:
Process A arrives at time t = 10, finishes t = 30

Process B arrives at time t = 10, finishes t = 50

Turnaround time
A=20,B=40

Average = 30

10

ASSUMPTIONS

1. Each job runs for the same amount of time

2. All jobs arrive at the same time

3. Once started, each job runs to completion

4. All jobs only use the CPU (no |/O)

5. Run-time of each job is known (perfect knowledge)

11

FIFO / FCFS

Job | arrival(s) run time (s) turnaround (s)
A ~0 10
B ~0 10
C ~0 10
A B C
Average
Turnaround
Time =
0 20 40 60 80 100 120

Time

ASSUMPTIONS

2. All jobs arrive at the same time

3. Once started, each job runs to completion

4. All jobs only use the CPU (no |/O)

5. Run-time of each job is known (perfect knowledge)

How will FIFO perform without this assumption?

13

When FIFO is Bad

Job Arrival(s) run time (s)
A ~0 100
B ~0 10
C ~0 10
C
0 20 40 60 80 100 120

Time

Average
Turnaround Time?

What is one schedule
that could be better?

CHALLENGE

Turnaround time suffers when short jobs must wait for long jobs

Convoy effect: e.g., everyone slowed down by a slow vehicle in a
single-lane road

New scheduler:
SJF (Shortest Job First)
Choose job with shortest run-time!
(note: we assume the OS knows the time for each job)

15

SHORTEST JOB FIRST (SJF)

Time

Job | Arrival(s) run time (s) Turnaround (s)
A ~0 100
B ~0 10
C ~0 10
B C A Average
Turnaround
Time
0 20 40 60 80 100 120

SJF Theory

SJF is provably optimal for minimizing turnaround time (assuming no
preemption)

Intuition:

Moving shorter job before long job improves the turnaround time of the short
job more than it harms the turnaround time of the long job

17

ASSUMPTIONS

 Eochiol ot ”
0 Ao : | .

3. Once started, each job runs to completion
4. All jobs only use the CPU (no I/O)

5. Run-time of each job is known (perfect knowledge)

18

Job Arrival(s) run time (s)
A ~0 100
B 10 10
C 10 10

What will be the schedule with SJF?

Take a min, chat with neighbors, and sketch the schedule and calculate the
turnaround time

Average

Job Arrival(s) run time (s) Turnaround
ime ?
A ~0 100 Time :
B 10 10
C 10 10
[B,C arrive]
| A B C
TA time(A):
TA time(B):
TA time(C):
0 20 40 60 80 100 120 Avg = ?

Time

PREEMPTIVE SCHEDULING

Previous schedulers:

FIFO and SJF are non-preemptive

Only schedule new job when previous job voluntarily relinquishes CPU
(after it exits)

Preemptive: Schedule different job by taking CPU away from running job
STCF (Shortest Time-to-Completion First) - preemptive version of SJF
Always run job that will complete the quickest

21

ASSUMPTIONS

> Aol : | .
4. All jobs only use the CPU (no I/O)

5. Run-time of each job is known (perfect knowledge)

22

PREEMPTIVE STCF

Job Arrival(s) run time (s)
A ~0 100
B 10 10
Average
C 10 10 Turnaround
[B,C arrive] Time
AlB C A

y
(10 + 20+ 120)/ 3
= 50s

0 20 40 60 80 100 12(
Time

PREEMPTIVE STCF

Job Arrival(s) run time (s)
A ~0 15
B 10 10
C 10 10

What is the schedule and turnaround time here?

ASSUMPTIONS

> Aol : | .
4—AlHebs-enrtyuse-the-GRY-{reHS)

5. Run-time of each job is known (perfect knowledge)

25

NOT IO
AWARE

Assume A and B need 50ms compute each
But...Aissues an IO (that takes 10ms) after running for 10ms

B issues no IOs
ABBBBB

STCF: if not I0-aware, can pick A initially CPUI I I I I
If you consider the entire process A Disk l l l l

: : 1oo 120 140
as a single job
ge | T|me

26

/0 AWARE SCHEDULING

A
I I Each 10ms
sub-job of A is
, shorter than Job B
Disk
I With STCF,

| I
0 20 40 60 80 100 120 140 Job A preempts Job B

Time

Treat Job A as 5 separate 10ms sub-jobs
When one sub-job completes I/0, another sub-job is ready

ASSUMPTIONS

28

What if you don’t know job runtime?

For metric of turnaround time:
If jobs have same length:

Then FIFO works well
If jobs have different lengths:

SJF is better than FIFO

Key question: How can OS get short jobs to complete first if OS doesn’t
know which are short?

29

Solution: Round Robin (RR)

|dea: alternate ready processes for a fixed-length time (called slice or quantum)

Preemptive

Short jobs will finish after fewer time slices

Short jobs will finish sooner than long ones

30

Different Job Lengths and Turnaround Time

0 5 10 I5 20 O 5 10 15 20

Avg Turnaround Time? Avg Turnaround Time?
(10+12+14)/3 =12 | i

All arrive at t=0 but A arrives a little earlier (so gets scheduled 1st in FIFO)
Turnaround time in RR: ?

Turnaround time in SJF:; ?

Say RR uses 1ms timeslice

31

Different Job Lengths and Turnaround Time

A B C ABC...

il

0 5 10 I5 20 O 5 10 I5 20

Avg Turnaround Time? Avg Turnaround Time?
(10+12+14)/3 = 12 | |

All arrive at t=0 but A arrives a little earlier (so gets scheduled 1st in FIFO)
Turnaround time in RR: B=>5, C=>6, A=>6+8=14; (5+6+14)/3 = 8.333
Turnaround time in SJF: (2+4+14)/3 = 6.667

For variable length jobs, RR gets close to SJF in turnaround time and is better than FIFO

When you don'’t know job lengths, RR does reasonably well when job lengths are different 32

ROUND ROBIN SCHEDULER

A B C ABCABCABCABCABC

. T | T T I I I|I I I T T T 1
25 3C 0 5 10 15 20 25

0 5 10 15 20 30
Time Time

When is RR bad in terms of turnaround time?

When jobs are equal length...

ROUND ROBIN

B C ABCABCABCABCABC

T | T T I II|III| T T 1
3C 0 5 10 15 20

10 15 20 25 25 30
Time Time

Average Turnaround Time

(5 + 10 + 15)/3 = 10s (13 + 14 + 15)/3 = 14s

34

Batch vs Interactive

Turnaround time is a good metric for CPU-bound programs

It is not a good metric for interactive programs

35

METRIC 2: RESPONSE TIME

Response time = first_run_time - arrival_time

B’s turnaround: 20s

B’s response: 10s

[B arrives]

80

36

ROUND ROBIN

B C ABCABCABCABCABC
10 15 20 25 30 0 5 10 15 20 25 30
Time Time
Average Response Time
(0+5+10)/3=5s (0+1+2)/3=1s
Average Turnaround Time
(5+ 10+ 15)/3 = 10s (13 + 14 + 15)/3 = 14s

37

TRADE-OFFS

Round robin increases turnaround time, decreases response time
Trade-off: fairness vs turnaround time

Tuning challenges:
What is a good time slice?

What is the overhead in context switching? (hint: not just saving
and restoring state)

Round robin: doesn’t have to know the job length

Short jobs will complete before long jobs (like SJF)

38

ASSUMPTIONS

39

MULTI-LEVEL FEEDBACK QUEUE

MLFQ: GENERAL PURPOSE SCHEDULER

Must support two job types with distinct goals
-“interactive” programs care about response time
-"batch” programs care about turnaround time

Approach:

Multiple levels of round-robin
Higher levels have higher priority

Processes are preemptable

41

[High Priority] Q8 — @ —
Q7

Q6
Q5
Q4 — @
Q3

Q2
[Low Priority] Q1 — @

MLFQ EXAMPLE

“Multi-level” — Each level is a

queue

Rules for MLFQ

Rule 1: If priority(A) > Priority(B)
A runs

Rule 2: If priority(A) == Priority(B),
A & B runin RR

42

CHALLENGES

How to set priority?
Does a process stay on one queue or move across queues?

Approach:
Use recent past behavior of process to predict future
Common approach in systems when don'’t have perfect knowledge

If interactive recently, will likely be interactive in the near future

43

MORE MLFQ RULES

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process

(longer time slices at lower priorities)

44

ONE LONG JOB

Starts at top ®

Uses whole slice
Moves down

Moves down again
Q1

Qo

0 S10 100 150 2

INTERACTIVE SHORT PROCESS JOINS

Q2

MLFQ PROBLEMS?

What is the problem
l with this schedule ?

47

AVOIDING STARVATION

Q2 Rule 5: After some
time period S, move all
] = the jobs in the system
Q1 § g to the topmost queue.

150 200 0

GAMING THE SCHEDULER ?

Q2
Job could trick scheduler by doing I/O
--- just before time-slice end
Q1 When high-pri job is blocked, low pri

job gets to run but when ready, it
preempts the low-pri job

A

2

Qo

GAMING THE SCHEDULER ?

Q2

Job could trick scheduler by doing I/0 just
--- before time-slice end

Q1

--- Rule 4*: Account for total run time at

Downgrade when exceed threshold
2

Qo

MLFQ Summary

Works well with a mix of compute-intensive and interactive jobs
Can finish shorter jobs earlier

5 rules to implement MLFQ

Versions of it are used in BSD, Sun Solaris, Windows NT, and
Linux.

But multi-core versions!

51

FAIRNESS: Quick Detour

How to define? 4 kids share a cake, each gets 25%
If one kid can eat only 10%, is it fair to force her to eat 25%?

Min-max Fairness: Least demanding gets fair share first
Kid1 takes 10%, And her 15% is divvied up: others kids

entitled to 30% fair share

Topic useful for any practical system design:

Queueing Theory

52

SUMMARY

Scheduling Policies
Understand workload characteristics like arrival, CPU, 1/O

Scope out goals, metrics (turnaround time, response time)
Metrics: Latency vs throughput

Real-life schedulers are complicated beasts
Lots of trade-offs based

Past behavior is good predictor of future behavior

53

