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AGENDA / OUTCOMES

3 pieces: Virtualization, Concurrency, and Persistence

Abstraction
What is a Process? What is its lifecycle?

Mechanism
How does process interact with the OS?
How does the OS switch between processes?

What we won’t cover here, but you should read up:
Ch4+5: process-related data structures. fork() & exec().
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ABSTRACTION: PROCESS
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PROGRAM VS PROCESS

#include <stdio.h> 

#include <stdlib.h> 

#include "common.h"

int main(int argc, char *argv[]) { 

char *str = argv[1];

int i = 0;

while (1) { 

printf("%s\n",str); 

i++;

}

return 0;

}

Program

Process

5



WHAT IS A PROCESS?

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp
movl $0, -4(%rbp) 

movl %edi, -8(%rbp) 

movq %rsi, -16(%rbp) 

cmpl $2, -8(%rbp)

je LBB0_2

Registers 
Memory addrs

Stream of executing instructions + associated “context”

File descriptors
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WHAT IS A PROCESS?

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp
movl $0, -4(%rbp) 

movl %edi, -8(%rbp) 

movq %rsi, -16(%rbp) 

cmpl $2, -8(%rbp)

je LBB0_2

PC: program counter
aka IP
SP: stack pointer
FP: frame pointer

Registers 
Memory addrs

Stream of executing instructions + associated “context”

File descriptors
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PROCESS CREATION

 code 

   static data
Program

CPU
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PROCESS CREATION
code

static data
heap

stack
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Program

 code 

   static data

CPU Memory



PROCESS CREATION

Can run multiple 

instances of 

same program

Each program has its 
own stack, heap etc.

code
static data

heap

stack
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 code 

   static data

CPU Memory



PROCESS VS THREAD

Threads: “Lightweight process”

Execution streams that share the parent 
process’ resources: address space, files, 
sockets, etc.

Each thread has its own stack & registers

Can have multiple threads within a single 
process
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SHARING THE CPU
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SHARING CPU

code, static 
data heap

stack

code, static 
data heap

stack

code, static 
data heap

stack

CPU
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TIME SHARING

code, static 
data heap

stack

code, static 
data heap

stack

code, static 
data heap

stack

CPU
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TIME SHARING

code, static 
data heap

stack

code, static 
data heap

stack

code, static 
data heap

stack

CPU
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WHAT TO DO WITH PROCESSES 
THAT ARE NOT RUNNING ?

OS Scheduler
Save context (aka state) when pausing process
Restore context on resumption

16



STATE TRANSITIONS
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STATE TRANSITIONS
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Question

Process 0 
 io
 io 
 cpu (1 unit)

Process 1
 cpu (4 units)

io
io

Time PID: 0 PID: 1
1     RUNNING
2
3
4
5
6
7
8

READY
Each IO takes 5 

time units
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Question

Process 0 
 io
 io 
 cpu (1 unit)

Process 1
 cpu (4 units)

io
io

Time PID: 0 PID: 1
1   RUNNING io
2   BLOCKED
3   BLOCKED
4       BLOCKED
5   BLOCKED
6   READY
7   RUNNING io
8       BLOCKED

 READY
RUNNING cpu
RUNNING cpu
RUNNING cpu 
RUNNING cpu 
RUNNING io 
BLOCKED
BLOCKED 

Each IO takes 5 
time units
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CPU SHARING

Policy goals
Virtualize CPU resource using processes
Higher CPU utilization? Fairness?

Mechanism goals
Efficiency: Sharing should not add much overhead
Control: OS should be able to intervene when required

Today, we’re focused on only mechanism
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EFFICIENT EXECUTION

Answer: Direct Execution
User process runs directly on the CPU (no OS interposition)  
Create process and transfer control to main()

What does “run directly on the CPU” mean?
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Problems with DE?
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Problems with DE?

Problems with DE:
Restricted ops: What if the process wants to do something 

restricted like allocate resources, access IO devices, etc?

How to switch processes: What if the process runs “forever”?

General solution: Limited Direct Execution (LDE)
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PROBLEM1: RESTRICTED OPS

How can we ensure user process can’t harm others?

Solution: privilege levels supported by hardware
CPU: has a mode bit
User process runs in user mode (restricted mode)

OS runs in kernel mode (unrestricted)

How can a process access restricted ops?
system call: function call implemented by OS
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SYSTEM CALL
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Syscall

Trap instruction :
Changes to unrestricted or kernel mode 

What is it in x86? INT, SYSCALL, SYSENTER

Ret-from-trap instruction:
Return from kernel to user mode             

What is it in x86? IRET, SYSRET, SYSEXIT

Libraries usually hide these instructions and give a nicer interface like read()/write()
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Syscall

Must save caller’s registers and instruction pointer to resume after 
syscall

Where are these saved?

Kernel stack: every process has its own kernel stack
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Operating System Hardware Program

Process A

Run main() ... 
Call system call 
trap into OS

save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler

Handle the trap
Do work of syscall 
return-from-trap

Restore regs (from kstack) 
move to user mode
jump to PC past trap instruction

29



Syscall

How does the hardware know where to jump (i.e., trap handler location)?

Solution: trap table & system call table
Syscall instruction tells trap handler to consult syscall table (syscall#)

At boot OS “configures” hardware with trap handler locations

On trap, hardware simply jumps to this location

OS knows this is a syscall, uses syscall number to invoke particular syscall

30



SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

Syscall: call kernel mode functions
Transfer from user-mode to kernel-mode (trap)
Return from kernel-mode to user-mode (return-from-trap)
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function write()

; write(1, message, msg_len)
mov 5, %rax               ; 5 => SYS_write
mov  1, %rdi   ; file descriptor
lea [message], %rsi
mov msg_len, %rdx

syscall   ; invoke trap
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PROBLEM2: HOW TO TAKE CPU AWAY?

Policy
To decide which process to schedule
More next lecture

Mechanism
Fast switch between processes
Low-level code that implements the switch

Separation of policy and mechanism: Recurring theme in OS
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HOW CAN OS GET CONTROL?

Option 1: Cooperative Multi-tasking: Trust process to relinquish CPU

○ Examples: System call, page fault (access page not in main 
memory), or error (illegal instruction or divide by zero)

○ Provide special yield() system call

P1

OS

P2

yield() call
yield() return
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PROBLEMS WITH COOPERATIVE ?

Disadvantage: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine 
Only solution: Reboot!

Not performed in modern operating systems
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TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking
Guarantees OS control within a deterministic time period

 Enter OS by using a periodic “alarm clock”

Hardware generates timer interrupt (CPU or separate chip) 
Example: Every 10ms
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timer interrupt

save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler

Program

Process A

Operating System Hardware
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timer interrupt

save regs(A) to k-stack(A) 
move to kernel mode 
jump to trap handler

Operating System Hardware Program

Process A

Handle the trap 
Call switch() routine
save kernel regs(A) to proc-struct(A) 
restore kernel regs(B) from proc-struct(B) 
switch to k-stack(B)
return-from-trap (into B)
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Operating System Hardware Program

Process A

Handle the trap

Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B) 
move to user mode
jump to B’s IP

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process B
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SUMMARY

Process: Abstraction to virtualize CPU resource
Time-sharing in OS to switch between processes

Key aspects of Mechanism
System calls to access restricted ops
Time-sharing: context-switch via timer interrupt

What we didn’t cover here, but you should read up:
Ch4+5: process-related data structures. fork() & exec().
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POLICY ?
Next lecture!
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