CS 423
Operating System Design:
Processes and CPU Virtualization

Ram Kesavan

Figures and slides ack: Prof. Shivaram Venkataraman (Wisconsin) 1

Logistics

Office Hours

Ram Kesavan
Tue/Thu: 3:15-4pm, 1310 DCL + 3126 Siebel

Peizhe Liu
MWE: 6-7pm Floor O Siebel

Gabiriella Xue
MF: 10-11am Floor O Siebel

AGENDA / OUTCOMES

3 pieces: Virtualization, Concurrency, and Persistence

Abstraction

What is a Process? What is its lifecycle?

Mechanism
How does process interact with the OS?

How does the OS switch between processes?

What we won'’t cover here, but you should read up:

Ch4+5: process-related data structures. fork() & exec().

ABSTRACTION: PROCESS

PROGRAM VS PROCESS

#tinclude <stdio.h>
#tinclude <stdlib.h>

#include "common.h"

Program

int main(int argc, char *argv[]) {

int 1 = 0;
while (1) {
printf("%s\n",str);

i++;

Process

char *str = argv[1l];

}

return 0;

WHAT IS A PROCESS?

Stream of executing instructions + associated “context”

pushq %rbp
movq %rsp, %rbp

subq $32, %rsp '
movl $0, -4(%rbp) Registers

movl %edi, -8(%rbp) Memory addrs
movq %rsi, -16(%rbp)

cmpl $2, -8(%rbp)
File descriptors
je LBBO_ 2

6

WHAT IS APROCESS?

Stream of executing instructions + associated “context”

pushq %rbp

movq %rsp, %rbp
PC: program counter | ¢ ,,0 ¢32, %rsp

aka IP movl $@, -4(%rbp) Registers
SP: stack pointer novl %edi, -8(%rbp) Memory addrs

FP: frame pointer movq %rsi, -16(%rbp)

cmpl $2, -8(%rbp)
File descriptors
je LBBO 2

v

PROCESS CREATION

CPU Memory

code
static data

Program

PROCESS CREATION

code

CPU static data Memory
heapl

stackT

code

static data
Program

PROCESS CREATION

code

CPU static data Memory
heapl

stackT

code

Can run multiple static data

Each program has its

instances of Program own stack, heap etc

same program

PROCESS VS THREAD

Threads: “Lightweight process”

Execution streams that share the parent
process’ resources: address space, files,
sockets, etc.

Each thread has its own stack & registers

Can have multiple threads within a single
process

11

SHARING THE CPU

code, static
data heap

stack

SHARING CPU

code, static
data heap

stack

code, static
data heap

stack

— "7 =

CPU

13

code, static
data heap

stack

TIME SHARING

CPU

14

TIME SHARING

code, static
data heap

stack

CPU

15

WHAT TO DO WITH PROCESSES
THAT ARE NOT RUNNING ?

OS Scheduler
Save context (aka state) when pausing process

Restore context on resumption

16

STATE TRANSITIONS

Descheduled
<«——> | Ready
Scheduled

1/0: |n|t|a / I/0: done

Blocked

STATE TRANSITIONS

Descheduled
.) — ‘ Ready
Scheduled
1/O: initiat / I/0: done

Blocked

18

Question

Process 0
0

[o]

cpu (1 unit)

Process 1
cpu (4 units)
[o)
[o)

Each IO takes 5
time units

Time |PID: 0O PID: 1
1 RUNNING READY
2
3
4
5
6
7
8

19

Question

Process 0
0

[o]

cpu (1 unit)

Process 1
cpu (4 units)
[o)
[o)

Each IO takes 5
time units

Time| PID:0 PID: 1
1 RUNNING io | READY
2 BLOCKED RUNNING cpu
3 BLOCKED RUNNING cpu
4 BLOCKED RUNNING cpu
5 BLOCKED RUNNING cpu
6 READY RUNNING io
7/ RUNNING io |BLOCKED
8 BLOCKED BLOCKED

20

CPU SHARING

Policy goals
Virtualize CPU resource using processes
Higher CPU utilization? Fairness?

Mechanism goals
Efficiency: Sharing should not add much overhead

Control: OS should be able to intervene when required

Today, we’re focused on only mechanism

21

EFFICIENT EXECUTION

Answer: Direct Execution
User process runs directly on the CPU (no OS interposition)

Create process and transfer control to main()

What does “run directly on the CPU” mean?

22

Problems with DE?

Problems with DE?

Problems with DE:
Restricted ops: What if the process wants to do something
restricted like allocate resources, access IO devices, etc?

How to switch processes: What if the process runs “forever™?

General solution: Limited Direct Execution (LDE)

24

PROBLEM1: RESTRICTED OPS

How can we ensure user process can’'t harm others?

Solution: privilege levels supported by hardware
CPU: has a mode bit
User process runs in user mode (restricted mode)

OS runs in kernel mode (unrestricted)

How can a process access restricted ops?
system call: function call implemented by OS

25

SYSTEM CALL

Syscall

Trap instruction :
Changes to unrestricted or kernel mode

What is it in x867 INT, SYSCALL, SYSENTER

Ret-from-trap instruction:
Return from kernel to user mode

What is it in x867 IRET, SYSRET, SYSEXIT

Libraries usually hide these instructions and give a nicer interface like read()/write()

27

Syscall

Must save caller’s registers and instruction pointer to resume after
syscall

Where are these saved?

Kernel stack: every process has its own kernel stack

28

Operating System

Handle the trap
Do work of syscall
return-from-trap

Program

Process A

Run main() ...
Call system call
trap into OS

save regs(A) to k-stack(A)

move to kernel mode

jump to trap handler

Restore regs (from kstack)
move to user mode
jump to PC past trap instruction

29

Syscall

How does the hardware know where to jump (i.e., trap handler location)?

Solution: trap table & system call table
Syscall instruction tells trap handler to consult syscall table (syscall#)

At boot OS “configures” hardware with trap handler locations
On trap, hardware simply jumps to this location

OS knows this is a syscall, uses syscall number to invoke particular syscall

30

SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

Syscall: call kernel mode functions
Transfer from user-mode to kernel-mode (trap)
Return from kernel-mode to user-mode (return-from-trap)

31

function write()

; write(1, message, msg_len)

mov 5, %rax ; 5=>SYS write
mov 1, %rdi ; file descriptor
lea [message], %rsi

mov msg_len, %rdx

syscall ; invoke trap

// System call numbers

#define SYS_fork
#define SYS exit
#define SYS_wait
#define SYS pipe
#define SYS write
#define SYS_ read
#define SYS close
#define SYS kill
#define SYS_exec
#define SYS open

: |

W 00 N O 1 A W N

=
Q)

32

PROBLEMZ2: HOW TO TAKE CPU AWAY?

Policy
To decide which process to schedule
More next lecture

Mechanism
Fast switch between processes

Low-level code that implements the switch

Separation of policy and mechanism: Recurring theme in OS

33

HOW CAN OS GET CONTROL?

Option 1: Cooperative Multi-tasking: Trust process to relinquish CPU

o Examples: System call, page fault (access page not in main
memory), or error (illegal instruction or divide by zero)
o Provide special yield () system call

yield() cal]‘ yield() return ?

34

PROBLEMS WITH COOPERATIVE ?

Disadvantage: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine
Only solution: Reboot!

Not performed in modern operating systems

35

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking
Guarantees OS control within a deterministic time period

Enter OS by using a periodic “alarm clock”

Hardware generates timer interrupt (CPU or separate chip)
Example: Every 10ms

36

Operating System

Program

Process A

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

37

Operating System

Handle the trap
Call switch() routine

save kernel regs(A) to proc-struct(A)

Hardware Program

Process A

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore kernel regs(B) from proc-struct(B)

switch to k-stack(B)
return-from-trap (into B)

38

Operating System Hardware Program
Process A
timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
Handle the trap .
_ . jump to trap handler
Call swﬂch(? routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP
Process B

39

SUMMARY

Process: Abstraction to virtualize CPU resource
Time-sharing in OS to switch between processes

Key aspects of Mechanism
System calls to access restricted ops

Time-sharing: context-switch via timer interrupt

What we didn’t cover here, but you should read up:

Ch4+5: process-related data structures. fork() & exec().

40

1/0: initiat

/ I/0: done

Blocked

POLICY ?
Next lecture!

41

