
CS 423
Operating System Design:

Processes and CPU Virtualization

Ram Kesavan

1Figures and slides ack: Prof. Shivaram Venkataraman (Wisconsin)

Logistics

Office Hours

Ram Kesavan
Tue/Thu: 3:15-4pm, 1310 DCL + 3126 Siebel

Peizhe Liu
MWF: 6-7pm Floor 0 Siebel

Gabriella Xue
MF: 10-11am Floor 0 Siebel

2

AGENDA / OUTCOMES

3 pieces: Virtualization, Concurrency, and Persistence

Abstraction
What is a Process? What is its lifecycle?

Mechanism
How does process interact with the OS?
How does the OS switch between processes?

What we won’t cover here, but you should read up:
Ch4+5: process-related data structures. fork() & exec().

3

ABSTRACTION: PROCESS

4

PROGRAM VS PROCESS

#include <stdio.h>

#include <stdlib.h>

#include "common.h"

int main(int argc, char *argv[]) {

char *str = argv[1];

int i = 0;

while (1) {

printf("%s\n",str);

i++;

}

return 0;

}

Program

Process

5

WHAT IS A PROCESS?

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp
movl $0, -4(%rbp)

movl %edi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpl $2, -8(%rbp)

je LBB0_2

Registers
Memory addrs

Stream of executing instructions + associated “context”

File descriptors

6

WHAT IS A PROCESS?

pushq %rbp

movq %rsp, %rbp

subq $32, %rsp
movl $0, -4(%rbp)

movl %edi, -8(%rbp)

movq %rsi, -16(%rbp)

cmpl $2, -8(%rbp)

je LBB0_2

PC: program counter
aka IP
SP: stack pointer
FP: frame pointer

Registers
Memory addrs

Stream of executing instructions + associated “context”

File descriptors

7

PROCESS CREATION

 code

 static data
Program

CPU

8

Memory

PROCESS CREATION
code

static data
heap

stack

9

Program

 code

 static data

CPU Memory

PROCESS CREATION

Can run multiple

instances of

same program

Each program has its
own stack, heap etc.

code
static data

heap

stack

10

Program

 code

 static data

CPU Memory

PROCESS VS THREAD

Threads: “Lightweight process”

Execution streams that share the parent
process’ resources: address space, files,
sockets, etc.

Each thread has its own stack & registers

Can have multiple threads within a single
process

11

SHARING THE CPU

12

SHARING CPU

code, static
data heap

stack

code, static
data heap

stack

code, static
data heap

stack

CPU
13

TIME SHARING

code, static
data heap

stack

code, static
data heap

stack

code, static
data heap

stack

CPU
14

TIME SHARING

code, static
data heap

stack

code, static
data heap

stack

code, static
data heap

stack

CPU
15

WHAT TO DO WITH PROCESSES
THAT ARE NOT RUNNING ?

OS Scheduler
Save context (aka state) when pausing process
Restore context on resumption

16

STATE TRANSITIONS

17

STATE TRANSITIONS

18

Question

Process 0
 io
 io
 cpu (1 unit)

Process 1
 cpu (4 units)

io
io

Time PID: 0 PID: 1
1 RUNNING
2
3
4
5
6
7
8

READY
Each IO takes 5

time units

19

Question

Process 0
 io
 io
 cpu (1 unit)

Process 1
 cpu (4 units)

io
io

Time PID: 0 PID: 1
1 RUNNING io
2 BLOCKED
3 BLOCKED
4 BLOCKED
5 BLOCKED
6 READY
7 RUNNING io
8 BLOCKED

 READY
RUNNING cpu
RUNNING cpu
RUNNING cpu
RUNNING cpu
RUNNING io
BLOCKED
BLOCKED

Each IO takes 5
time units

20

CPU SHARING

Policy goals
Virtualize CPU resource using processes
Higher CPU utilization? Fairness?

Mechanism goals
Efficiency: Sharing should not add much overhead
Control: OS should be able to intervene when required

Today, we’re focused on only mechanism
21

EFFICIENT EXECUTION

Answer: Direct Execution
User process runs directly on the CPU (no OS interposition)
Create process and transfer control to main()

What does “run directly on the CPU” mean?

22

Problems with DE?

23

Problems with DE?

Problems with DE:
Restricted ops: What if the process wants to do something

restricted like allocate resources, access IO devices, etc?

How to switch processes: What if the process runs “forever”?

General solution: Limited Direct Execution (LDE)

24

PROBLEM1: RESTRICTED OPS

How can we ensure user process can’t harm others?

Solution: privilege levels supported by hardware
CPU: has a mode bit
User process runs in user mode (restricted mode)

OS runs in kernel mode (unrestricted)

How can a process access restricted ops?
system call: function call implemented by OS

25

SYSTEM CALL

26

Syscall

Trap instruction :
Changes to unrestricted or kernel mode

What is it in x86? INT, SYSCALL, SYSENTER

Ret-from-trap instruction:
Return from kernel to user mode

What is it in x86? IRET, SYSRET, SYSEXIT

Libraries usually hide these instructions and give a nicer interface like read()/write()

27

Syscall

Must save caller’s registers and instruction pointer to resume after
syscall

Where are these saved?

Kernel stack: every process has its own kernel stack

28

Operating System Hardware Program

Process A

Run main() ...
Call system call
trap into OS

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Handle the trap
Do work of syscall
return-from-trap

Restore regs (from kstack)
move to user mode
jump to PC past trap instruction

29

Syscall

How does the hardware know where to jump (i.e., trap handler location)?

Solution: trap table & system call table
Syscall instruction tells trap handler to consult syscall table (syscall#)

At boot OS “configures” hardware with trap handler locations

On trap, hardware simply jumps to this location

OS knows this is a syscall, uses syscall number to invoke particular syscall

30

SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

Syscall: call kernel mode functions
Transfer from user-mode to kernel-mode (trap)
Return from kernel-mode to user-mode (return-from-trap)

31

function write()

; write(1, message, msg_len)
mov 5, %rax ; 5 => SYS_write
mov 1, %rdi ; file descriptor
lea [message], %rsi
mov msg_len, %rdx

syscall ; invoke trap

32

PROBLEM2: HOW TO TAKE CPU AWAY?

Policy
To decide which process to schedule
More next lecture

Mechanism
Fast switch between processes
Low-level code that implements the switch

Separation of policy and mechanism: Recurring theme in OS

33

HOW CAN OS GET CONTROL?

Option 1: Cooperative Multi-tasking: Trust process to relinquish CPU

○ Examples: System call, page fault (access page not in main
memory), or error (illegal instruction or divide by zero)

○ Provide special yield() system call

P1

OS

P2

yield() call
yield() return

34

PROBLEMS WITH COOPERATIVE ?

Disadvantage: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine
Only solution: Reboot!

Not performed in modern operating systems

35

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking
Guarantees OS control within a deterministic time period

 Enter OS by using a periodic “alarm clock”

Hardware generates timer interrupt (CPU or separate chip)
Example: Every 10ms

36

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Program

Process A

Operating System Hardware

37

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System Hardware Program

Process A

Handle the trap
Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

38

Operating System Hardware Program

Process A

Handle the trap

Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process B

39

SUMMARY

Process: Abstraction to virtualize CPU resource
Time-sharing in OS to switch between processes

Key aspects of Mechanism
System calls to access restricted ops
Time-sharing: context-switch via timer interrupt

What we didn’t cover here, but you should read up:
Ch4+5: process-related data structures. fork() & exec().

40

POLICY ?
Next lecture!

41

