
CS 423
Operating System Design

Spring 2026
Ram Kesavan

1
Acknowledgement: U Wisconsin CS537



Learning Objectives
Before CS 423:
• Knowledge of C/C++ 

• Basic knowledge of Linux/POSIX APIs and functions 

After CS 423:

• Mastery of Operating Systems concepts

• Comprehensive understanding of CPU and memory virtualization, concurrency problems and solutions, persistent storage

• Become a kernel hacker capable of establishing a kernel development environment and modifying operating system code

Today:

• Introduce the instruction team

• Go over the requirements and expectations

2



Staff

● Instructor

Prof. Ram Kesavan

● Teaching Assistants 

Peizhe Liu (MS student)

Gabriella Xue (PhD student)

● Office Hours

Check the website: will update soon

3



Ram Kesavan
Assoc. Clinical Prof
• 25 years in tech industry: NetApp & Google Cloud

• Storage, file systems, distributed databases 

• Fall ‘25: started a new career in academia

• Interests: basketball, cycling, badminton, singing

• Still adjusting to the cold…brrr

4



Gabriella Xue

- PhD student working on satellite networking

- Favorite OS topic: networking

- Hobbies:

- Marine life enthusiast

- Interested in corals and saltwater fish

- I keep 2 reef tanks with 40+ corals

Fun fact: if I can teach this little guy how to eat, 

then I’m not afraid of teaching anything :))

5



Peizhe Liu

2nd year M.S. student working on OS 
kernel and storage
Graduated from UIUC ECE
Hobbies

Teaching
(CS125, ECE385, ECE391, ECE411 as CA, 
CS423 as TA)
Retrocomputing
(Founder of Retrotech club at UIUC)
Blood donation
(Featured on local news)
Homelab!

6



Online Discussion Forum

7



Why take this course?

• Learn the internals of operating systems
• Most of the concepts/ideas apply to systems in general
• You’ll be faster & better at understanding, designing, and 

debugging most software & distributed systems
• Core systems becoming a rarer skill in the tech industry
• Necessary to call BS on boss’/AI’s/peers’ ideas

8



Prereqs

Have you taken CS341?

Have you taken ECE391?

Do you have systems programming experience from another 
university or a job?

If not, you may find this course very difficult…

9



Textbook

“Operating Systems: Three Easy Pieces” aka OSTEP
Remzi & Andrea Arpaci-Dusseau

It is FREE! Available at ostep.org

The chapters are linked on the website.

10

http://ostep.org/


Other books

Alternative Textbooks (Not Free):
Operating Systems: Principles & Practice Anderson and Dahlin, 2018 

Modern Operating Systems Tanenbaum and Bos, 2014

Operating System Concepts Silberschatz, Galvin and Gagne, 2012 

Other Recommended Reading:

Linux Kernel Development Love, 2010 – Useful for MPs

11



Requirements

Attendance/Participation

Come to class, W/F, 2:00-3:15

Participate actively in class and on Piazza
Machine Problems (MPs): 4 major programming assignments 

Midterm & Final Exams: Dates TBD

4 Cr: in a few slides

12



Participation

Contribute to class: ask questions, respond to questions, share 
relevant outside knowledge.

Contribute *good* questions and answers to Piazza!

Other questions (e.g., administrative) on Piazza are also welcome but 
won’t give you participation credit.

13



Machine Problems

Implement and evaluate concepts learnt in a well-known OS

• Kernel Environment: Linux.
• Not a toy OS, but a real 25 million LoC behemoth.

• Why? 
• Building out a small OS is good experience, but navigating and debugging 

existing code is a more practical skill
• Typical tech industry job: read & grok 100x to 1000x more code than you 

write
• If anything, AI makes that ratio worse…it writes, you read!

14



Individual work

Design & Code TO BE DONE INDEPENDENTLY!

• Ok to discuss concepts & current Linux code 

with others & on Piazza

• Ok to discuss MPs at a high level with others & 

on Piazza

• Ok to get help from TAs for MPs; but they 

won’t design/debug your code

• Not ok to share code or design documents with 

others

• Not ok to directly help (code or even 

pair-program with) others

• Not ok to use AI to code; also, you will learn 

very little

15



MP Dev Environment

All MPs need a Linux development environment
MP0: setup a kernel dev environment on your own machine 

Linux or Windows or MacOS

We can also request VMs from EngrIT

Clearer instructions will come soon

16



MP Submission

Code repository
You will need to submit your source code 

We will create a private GitHub repo for you 

Everything will be based on GitHub

18



4 Cr Section

Graduate & ambitious undergraduate students interested in research

Earn your 4th credit by reading and summarizing weekly literature assignments 
Summaries due before start of Tue class
We will set up a google form or folder to submit your reviews 

Assigned readings are marked as C4 in the class schedule

Grading: Summaries will contribute to C4 student’s homework and participation 
credit.

19



4Cr Paper Summaries

Each summary should be about 1-2 pages in length:

1. What were the motivations for this work?

2. What is the proposed solution?

3. What is the work's evaluation of the proposed solution?

4. What is your analysis of the problem, idea and evaluation?

5. What were the contributions?

6. What were future directions for this research?

7. What questions are you left with?

8. What is your take-away message from this paper?

20



Grading

• Final Exam: 20-30%
• Mid-term: 20%
• Machine Problems: 50%--40% 

• Eg: 4%, 12%, 12%, 12%, 10%
• Participation: 10%

Might change a bit

21



Policies

No late MP submissions
• 1 week window for re-grades from return date

Cheating policy: Zero tolerance

•1st offense: get zero

•2nd offense: fail class

Example: You submitted two MPs in which solutions were not your own. Both 
were discovered at the same time. You fail class.

22



What is an OS?

A layer of software that manages a computer’s resources for its users and their 
applications

23



OS Interface

24



25



WHAT DOES OS PROVIDE: ROLE #1

Abstraction:Provide standard library to access resources

What is a resource? 
Anything valuable (e.g., CPU, memory, storage) 

Examples of abstractions OS typically provide?
CPU:
Memory:
Storage:

26



WHY SHOULD OS DO THIS ?

Advantages of OS providing abstraction?
Allow applications to reuse common facilities 
Make different devices look the same

Provide higher-level or more useful functionality

Challenges
What are the correct abstractions?
How much of hardware should be exposed?

27



WHAT DOES OS PROVIDE: ROLE #2

Resource management – Share resources well

What is sharing?
Multiple users of the system
Multiple applications run by same user

28



WHY SHOULD OS DO THIS ?

Advantages of OS providing resource management 
Protect applications at a common layer
Provide efficient access to resources (cost, time, energy) 
Provide fair access to resources

Challenges
What are the correct mechanisms? 
What are the correct policies?

29



OPERATING SYSTEM ROLES SUMMARY

Two main roles 
Abstraction

Resource management

Goals: Ease of use, Performance, Isolation, Reliability

30



COURSE 
APPROACH

31



OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces:

1. Virtualization
2. Concurrency
3. Persistence

General-purpose OS: most concepts applicable to other 
kinds of OS

32



Make each application believe it has each resource to itself

Example: CPU virtualization

int main(int argc, char *argv[]) { 
char *str = argv[1];
int i = 0;
while (1) { 

// run forever
printf("%s\n", str);
i++;

}
return 0;

}

VIRTUALIZATION

What is the mechanism needed 
here?

What is the policy?

33



Make each application believe it has each resource to itself
Virtualization also means isolation

Another Example: memory virtualization

VIRTUALIZATION

34



CONCURRENCY

Events occur simultaneously and may interact with one another 
Need to

Provide abstractions (locks, semaphores, condition variables etc.)

35



CONCURRENCY

36



What’s happening here?

The line “c++;” when compiled produces:

// mov <dst>, <src>
mov eax, mem_addr(c)
add 1, eax
mov mem_addr(c), eax 

What could go wrong?

37



PERSISTENCE

Data lives longer than execution lifetime of a one 
program
Machine may lose power or crash unexpectedly

Issues:
High-level abstractions: Files, directories (folders), links 
Isolation: data ownership & sharing
Correctness with unexpected failures

Performance: disks are slow, SSDs faster
38



ADVANCED TOPICS

Virtualization 
Concurrency 
Persistence 
Advanced 
Topics

Virtual Machines 
Network File Systems 
SSDs

39



Today’s Class: Summary

Introduction to 423, staff, policies, etc.

General-purpose OS: what & why
3 pieces: virtualization, concurrency, persistence

40



Next Lecture

1/22 Thursday

Topic: Process abstraction, CPU scheduling

41


