CS 423
Operating System Design
Spring 2026

Ram Kesavan

Acknowledgement: U Wisconsin CS537

Learning Objectives

Before CS 423:
* Knowledge of C/C++

 Basic knowledge of Linux/POSIX APIs and functions
After CS 423:

» Mastery of Operating Systems concepts
» Comprehensive understanding of CPU and memory virtualization, concurrency problems and solutions, persistent storage
» Become a kernel hacker capable of establishing a kernel development environment and modifying operating system code
Today:

* Introduce the instruction team

» Go over the requirements and expectations

Staff

° Instructor

Prof. Ram Kesavan

° Teaching Assistants

Peizhe Liu (MS student)
Gabriella Xue (PhD student)

° Office Hours

Check the website: will update soon

Ram Kesavan

Assoc. Clinical Prof
« 25 years in tech industry: NetApp & Google Cloud

Storage, file systems, distributed databases

Fall ‘25: started a new career in academia

Interests: basketball, cycling, badminton, singing

Still adjusting to the cold...brrr

Gabriella Xue

PhD student working on satellite networking

Favorite OS topic: networking

Hobbies:

- Marine life enthusiast
- Interested in corals and saltwater fish

-l keep 2 reef tanks with 40+ corals

Fun fact: if | can teach this little guy how to eat,

then I'm not afraid of teaching anything :))

Peizhe Liu

2" year M.S. student working on OS
kernel and storage
Graduated from UIUC ECE
Hobbies
Teaching
(CS125, ECE385, ECE391, ECE411 as CA,
CS423 as TA)
Retrocomputing
(Founder of Retrotech club at UIUC)
Blood donation
(Featured on local news)
Homelab!

Online Discussion Forum

PIQZZAa

You are already added on the Piazza.
(if not, find the link on the course website)

Go here for announcements and to ask questions.

Instruction team will be checking forums regularly!

Why take this course?

« Learn the internals of operating systems

« Most of the concepts/ideas apply to systems in general

* You'll be faster & better at understanding, designing, and
debugging most software & distributed systems

« Core systems becoming a rarer skill in the tech industry

* Necessary to call BS on boss’/Al's/peers’ ideas

Prereqs

Have you taken CS3417?
Have you taken ECE391?

Do you have systems programming experience from another
university or a job?

If not, you may find this course very difficult...

Textbook

“Operating Systems: Three Easy Pieces” aka OSTEP
Remzi & Andrea Arpaci-Dusseau

It is FREE! Available at ostep.org

The chapters are linked on the website.

10

http://ostep.org/

Other books

Alternative Textbooks (Not Free):
Operating Systems: Principles & Practice Anderson and Dahlin, 2018

Modern Operating Systems Tanenbaum and Bos, 2014
Operating System Concepts Silberschatz, Galvin and Gagne, 2012

Other Recommended Reading:

Linux Kernel Development Love, 2010 — Useful for MPs

11

Requirements

Attendance/Participation
Come to class, W/F, 2:00-3:15

Participate actively in class and on Piazza
Machine Problems (MPs): 4 major programming assignments

Midterm & Final Exams: Dates TBD

4 Cr: in a few slides

12

Participation

Contribute to class: ask questions, respond to questions, share
relevant outside knowledge.

Contribute *good* questions and answers to Piazza!

Other questions (e.g., administrative) on Piazza are also welcome but
won'’t give you participation credit.

13

Machine Problems

Implement and evaluate concepts learnt in a well-known OS

« Kernel Environment: Linux.

Not a toy OS, but a real 25 million LoC behemoth.

 Why?

Building out a small OS is good experience, but navigating and debugging
existing code is a more practical skill
Typical tech industry job: read & grok 100x to 1000x more code than you

write
If anything, Al makes that ratio worse...it writes, you read!

14

Individual work

Design & Code TO BE DONE INDEPENDENTLY!

Ok to discuss concepts & current Linux code
with others & on Piazza

Ok to discuss MPs at a high level with others &
on Piazza

Ok to get help from TAs for MPs; but they
won'’t design/debug your code

Not ok to share code or design documents with

15

MP Dev Environment

All MPs need a Linux development environment
MPO: setup a kernel dev environment on your own machine

Linux or Windows or MacOS
We can also request VMs from EngriT

Clearer instructions will come soon

16

MP Submission

Code repository
You will need to submit your source code

We will create a private GitHub repo for you

Everything will be based on GitHub

18

4 Cr Section

Graduate & ambitious undergraduate students interested in research

Earn your 4th credit by reading and summarizing weekly literature assignments
Summaries due before start of Tue class
We will set up a google form or folder to submit your reviews

Assigned readings are marked as C4 in the class schedule

Grading: Summaries will contribute to C4 student’s homework and participation
credit.

19

4Cr Paper Summaries

Each summary should be about 1-2 pages in length:

1.

© N o o A~ W DD

What were the motivations for this work?

What is the proposed solution?

What is the work's evaluation of the proposed solution?
What is your analysis of the problem, idea and evaluation?
What were the contributions?

What were future directions for this research?

What questions are you left with?

What is your take-away message from this paper?

20

Grading

Final Exam: 20-30%

Mid-term: 20%

Machine Problems: 50%--40%
 Eg: 4%, 12%, 12%, 12%, 10%

Participation: 10%

Might change a bit

21

Policies

No late MP submissions
» 1 week window for re-grades from return date

Cheating policy: Zero tolerance
«1st offense: get zero

«2nd offense: fail class

Example: You submitted two MPs in which solutions were not your own. Both
were discovered at the same time. You fail class.

22

What is an OS?

A layer of software that manages a computer’s resources for its users and their

applications

Application Software

23

OS Interface

The OS exports a user interface. Why?

System lerary i

Standard Operating System Interface

Operating System

(=)

'Ilﬂ =

Network'

24

OS Runs on Multiple Platforms while presenting the same
Interface'

pplication Software

Standard Operating System Interface
Operatmg System (machine independent part)

Abstraction

Hardware
Layer

25

WHAT DOES OS PROVIDE: ROLE #1

Abstraction: Provide standard library to access resources

What is a resource?
Anything valuable (e.g., CPU, memory, storage)

Examples of abstractions OS typically provide?
CPU:
Memory:
Storage:

26

WHY SHOULD OS DO THIS ?

Advantages of OS providing abstraction?
Allow applications to reuse common facilities

Make different devices look the same

Provide higher-level or more useful functionality

Challenges
What are the correct abstractions?
How much of hardware should be exposed?

27

WHAT DOES OS PROVIDE: ROLE #2

Resource management — Share resources well

What is sharing?
Multiple users of the system
Multiple applications run by same user

28

WHY SHOULD OS DO THIS ?

Advantages of OS providing resource management
Protect applications at a common layer
Provide efficient access to resources (cost, time, energy)
Provide fair access to resources

Challenges
What are the correct mechanisms?

What are the correct policies?

29

OPERATING SYSTEM ROLES SUMMARY

Two main roles
Abstraction

Resource management

Goals: Ease of use, Performance, Isolation, Reliability

30

COURSE
APPROACH

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces:

1. Virtualization
2. Concurrency
3. Persistence

General-purpose OS: most concepts applicable to other
kinds of OS

32

VIRTUALIZATION

Make each application believe it has each resource to itself

Example: CPU virtualization
What is the mechanism needed

int main(int argc, char *argv[]) { here?
char *str = argv[1];
inti=0; What is the policy?
while (1) {

// run forever
printf("%s\n", str);
++;

}

return O;

33

VIRTUALIZATION

Make each application believe it has each resource to itself
Virtualization also means isolation

Another Example: memory virtualization

34

CONCURRENCY

Events occur simultaneously and may interact with one another
Need to

Provide abstractions (locks, semaphores, condition variables etc.)

35

CONCURRENCY

static volatile int c = 0;
)

void *mythread(void *arg) {

int i

for (i = 0; i < 1000000; i++) c++;
return NULL;

}

Main prints the value of c
What do you expect to be printed?
With 1 thread? With 2 threads!?

What's happening here?

The line “c++;” when compiled produces:

/[mov <dst>, <src>

mov eax, mem_addr(c)
add 1, eax

mov mem_addr(c), eax

What could go wrong?

37

PERSISTENCE

Data lives longer than execution lifetime of a one
program
Machine may lose power or crash unexpectedly

Issues:
High-level abstractions: Files, directories (folders), links

|solation: data ownership & sharing
Correctness with unexpected failures

Performance: disks are slow, SSDs faster

38

ADVANCED TOPICS

Advanced

Topics
Virtual Machines
Network File Systems
SSDs

39

Today’s Class: Summary

Introduction to 423, staff, policies, etc.

General-purpose OS: what & why
3 pieces: virtualization, concurrency, persistence

40

Next Lecture

1/22 Thursday

Topic: Process abstraction, CPU scheduling

41

