CS423 Spring 2026 MP1: Introduction to Linux
Kernel Programming

Assignment Due: Feb. 25th at 11:59 PM CT. No late submission.

This document will guide you through your MP1 for CS 423 Operating System Design. In this
MP, you will learn how to create a Linux kernel module from scratch.

This MP will require you to read, write, and debug C-based kernel code in depth. It may take
you several days to complete.

Overview

Goals

- In this Machine problem, you will learn the basics of Linux Kernel Programming

- You will learn to create a Linux Kernel Module (LKM).

- You will use Timers in the Linux Kernel to schedule work

- You will use Work Queues to defer work through the use of the Two-Halves concept

- You will use the basics of the Linked Lists interface in the Linux Kernel to temporarily
store data in the kernel

- You will learn the basics of Concurrency and Locking in the Linux Kernel

- You will interface applications in the user space with your Kernel Module through the
Proc Filesystem

Before you start

What you need

- You should have successfully completed MPO, as you may wish to test your kernel
module using the virtual machine created in MPO.

- You should be able to read, write, and debug program code written in C language.

- (Recommended) You may have a code editor that supports Linux kernel module
development - for example, VSCode, Neovim, or GNU Emacs.

- (Recommended) You may use the Linux Kernel Documentation
(https://www.kernel.org/doc/html/v5.15/index.html) to search the Linux kernel documents
for concepts and high-level descriptions.

- (Recommended) You may use the Elixir Cross Referencer
(https://elixir.bootlin.com/linux/v5.15.165/source) to search the Linux kernel codebase for
function definitions and use cases.

https://www.kernel.org/doc/html/v5.15/index.html
https://elixir.bootlin.com/linux/v5.15.165/source

Introduction

Kernel Programming has some particularities that can make it more difficult to debug and learn.
In this section, we will discuss a few of them:

1. The most important difference between kernel and user application programming in
Linux is the lack of isolation. The kernel itself and all kernel modules are running in the
same context. This means that errors encountered in the kernel (e.g., trying to
dereference a null pointer) can cause kernel panics - making your entire kernel to stop
working - or even brick your whole machine in the worst case. Therefore, when testing
your code, we strongly recommend you do so in a virtual machine.

2. Another important difference is that in kernel programming, preemption is not always
available, which means that we can indefinitely hog the CPU or cause system-wide
deadlocks. At the user level, an infinite loop might just increase your CPU usage. But in
the kernel, such a loop could potentially put your whole machine into an unresponsive
state. So when you are using loops or locks, please make sure they can always
end/release in time.

3. Also, another important issue is the lack of user space libraries. Although there are some
common libc functions implemented in the kernel, such as memcpy or abs, you'll find
more functions are only available in an alternative form, such as malloc (kernel uses
kmalloc)or printf (kernel uses printk). Worse, some functions are not available in

the kernel at all, such as scanf. This limits what we can do and how we implement or
test code.

4. Last but not least, the Linux Kernel disallows the use of floating-point types and
operations. That is, all the math must be implemented using integer types (i.e., int,
long, or char).

Through the rest of the document and your implementation, you will learn some of the basic
mechanisms, structures, and designs common to many areas of Linux Kernel Development. If
you feel lost, the best thing to do is to check the Linux Kernel Documentation
(https://www.kernel.org/doc/html/v5.15/index.html) or the Elixir Cross Referencer
(https://elixir.bootlin.com/linux/v5.15.165/source) - they are your most useful encyclopedia and
dictionary in kernel development. Also, Stack Overflow, LWN.net, and O'Reilly Media can
sometimes provide you with useful information.

Problem Description

In this MP, you will build a kernel module that measures the User Space CPU Time of
processes. The kernel module should allow multiple processes to register themselves as

https://www.kernel.org/doc/html/v5.15/index.html
https://elixir.bootlin.com/linux/v5.15.165/source

targets of measurement and later query their CPU Time usage. You will also need to create a
user-space program to test your kernel module implementation.

Grading Criteria (Total Possible Points: 100%):

1.

The kernel module and user program will be tested in a VM environment prepared
according to the MPO guide. Multiple instances of the user program may run concurrently
to test if multi-process tracking is functional in your kernel module.

Create a file in the Proc Filesystem. This file is the interface for user programs to interact
with your kernel module. You must use the Kernel Proc Filesystem API to create the file
and handle read/write requests. The Proc file should be available at
/proc/mp1/status. It should be readable and writable by anyone (file permission

should be 0666). (interfaces defined in 1inux/proc_fs.h) (10%)

When a process writes a PID (Process Identifier) into the Proc file, the process
corresponding to the PID should be registered in the module for User Space CPU Time
measurement. Multiple PIDs may be registered. The written message is a decimal string,
which contains the PID. (10%)

When a process reads the Proc file, the file should return a list of registered processes
together with their corresponding User Space CPU Time (also known as user time), with
the following format: (10%)

<PID1>: <CPU Time of PID1>
<PID2>: <CPU Time of PID2>

For example:

423: 10002
523: 99999
623: 1002222

5. The kernel module should keep the list of registered processes and their user time in
memory and update them every 5 seconds.

1. You must use Kernel Linked List to implement the list and add/remove/iteration
functionalities. (interfaces defined in 1inux/list.h) (10%)

2. You must use the Kernel Timer to implement the periodic update functionality.
(interfaces defined in 1inux/timer .h) (10%)

3. You must use the Two-Halves Approach to handle the timer interrupt, and
implement it using Kernel Workqueue. Which means when your timer is fired,
your timer callback function should use Kernel Workqueue to schedule a user
time update work (Top-Half). The user time update work should, when exiting the
Workqueue, iterate once over the registered process list and update the user
time (Bottom-Half). (interfaces defined in 1inux/workqueue.h) (5%)

4. You must use Kernel Mutexes to protect your process list from any race
conditions. (interfaces defined in Linux/mutex.h) (5%)

5. You must use Kernel Slab Allocator to allocate and free memory. (interfaces
defined in 1inux/slab.h) (5%)

6. Your kernel module should be able to detect the liveness of processes and
remove dead/exited processes from the registered process list. (5%)

7. ltis acceptable for your work function to be scheduled even if there are no
registered processes.

6. Your kernel module should be able to release all the resources it acquired and exit

gracefully when being unloaded. (10%)

Your code is well commented, readable, warning-free, has a completed README file,
and follows software engineering principles. (10%)

Your user-space program should first register itself using the Proc file exposed by your

kernel module. It should do some busy work (that is measurable by your kernel module)
for 10-15 seconds. Ideally, this program does little to no 1/O, so it doesn't need to block

much. One possibility is some mathematical computations. Read the Proc file and print

the content it reads, and then exit. (10%)

Implementation Challenges

In this MP, you will find many challenges commonly found in Kernel Programming. Some of
these challenges are discussed below:

During the registration process, you will need to access data from the User Space.
Kernel and User-Space Applications run in two separate memory spaces, so
de-referencing pointers containing data from the User Space is not possible. Instead,

you must use the function copy_from_user () to copy the data into a buffer located in
kernel memory. Similarly, when returning data through a pointer, you must copy the data
from the kernel space into the user space using the function copy_to_user ().

Common cases where this might appear are in Proc filesystem callbacks and system
calls.

- Another important challenge is the lack of libraries, instead the kernel provides similar
versions of some commonly used functions found in libraries. For example malloc() is
replaced with kmalloc(), printf() is replaced by printk(). Some other handy
functions implemented in the kernel are snprintf(), and kstrtoint().

- Throughout your implementation, you will need to face different running contexts. A
context is the entity thatthe kernel is running code on behalf of. In the Linux kernel, you
will find 3 different contexts:

1. Kernel Context: Runs on behalf of the kernel itself. Example: Kernel Threads and
Workqueues.

2. Process Context: Runs on behalf of some process. Example: System Calls.

3. Interrupt Context: Runs on behalf of an interrupt. Example: Timer Interrupt.

- The Linux kernel is a preemptible kernel. This means that all the contexts run
concurrently and can be interrupted from their execution at any time. You will need to
protect your data structures through the use of appropriate locks and prevent race
conditions wherever they appear. Please note that architectural reasons limit which type
of locks can be used for each context. For example, interrupt context code cannot sleep
and therefore cannot use semaphores, which might result in a deadlock when used.

- This sleeping restriction in interrupt context also prevents you from using various
functions that sleep during their execution. For example: Functions such as printk()
that access devices, functions that schedule processes, copy data from and to the user
space, and functions that allocate memory.

Due to all these challenges, we recommend that you build and test your code often in small
increments. You can use the WARN_ON() macro as an assertion, or use pr_warn() function to
print some debug messages.

Implementation Overview

The figure below shows the architecture of MP1: the kernel module with its Workqueue and
Timer and the Proc Filesystem, all in the kernel space, and the test application (that you will also
implement) in the user space.

User App

Write self PID to
/proc/mp1/status

Then

}

Do some calculations (10-
15 seconds)

Register itself to Then

Read /proc/mp1/status
and print to screen

Read results from

/
\l / Kernel Module

Proc Filesystem Entry

Triggers on Read Triggers on Write

l

Proc File Read Callback

k)

Check and Report Run Time Register Process

~ /

Proc File Write Callback ‘

‘ Timer Callback (Top-Half)

Schedule Work

!

Work Function (Bottom-
Half)

)

Update Run Time and
Remove Dead Process

List of Registered Processes

Module Initializer

Module Finalizer

Before you start, you should modify your Makefile. Our provided Makefile does not work in your
development VM. Specifically, you should change the path to your downloaded kernel source.

obj-m += mp1.0

all:

make -C <PATH_TO_YOUR_5.15.165_KERNEL> M=$(PWD) modules
gcc -0 userapp userapp.c

clean:
make -C <PATH_TO_YOUR_5.15.165_KERNEL> M=$(PWD) clean
S$(RM) userapp

For example:

obj-m += mp1.o

all:
make -C ~/linux-5.15.165 M=$(PWD) modules
gcc -0 userapp userapp.c

clean:
make -C ~/linux-5.15.165 M=$(PWD) clean
S(RM) userapp

Do not modify anything else than the kernel source path. Our autograder will replace
your Makefile, so if you did something fancy like adding additional source files, your MP
won’t compile and you will receive a zero.

After modifying your Makefile, you can make clangd work (introduced in the MPO walkthrough)
by doing a compilation with bear. Please refer back to the MPO doc.

Step 1: Please start from the Hello World module available in your submission repo on GitHub
classroom. Please edit the MODULE_AUTHOR line first. You can find the starter code in mp1.c
of your GitHub submission repository.

Step 2: You should implement the Proc Filesystem entries (i.e /proc/mp1/status). You
need to create a Proc Filesystem folder /proc/mp1 first and then create the file
/proc/mp1/status. Make sure that you implement the creation of these entries in your
module init () function and the destruction in your module exit () function. At this point, you
should test your code. Compile the module and load it in memory using insmod. You should be
able to see the Proc Filesystem entries you created using 1s. Now remove the module using

rmmod and check that the entries are properly removed. You will need to include the Proc
Filesystem header file using #include <linux/proc_fs.h>.

Step 3: The next step should be to implement the process registration. You will need to
declare and initialize a Kernel Linked List. The kernel provides macros and functions to traverse
the list, and insert and delete elements. These definitions are available to be included using
#include <linux/list.h>. To allocate nodes for your list, you may want to use the Slab

Allocator. Definitions for Slab Allocator are available in 1inux/slab.h.

Step 4: You will also need to implement the callback functions for read and write in the entry
of the Proc Filesystem you created. Keep the format of the registration string simple. It should
be a decimal string able to be parsed by the kstrtoint() function. We suggest that a user
space application should be able to register itself by simply writing the PID to the Proc
Filesystem entry you created (e.g echo "423" > /proc/mp1/status). The callback
functions will read and write data from and to the user space so you need to use
copy_from_user() and copy_to_user (). You may just echo back the PID recorded at this
stage. You can use snprintf () to format a string.

We assume pids written to /proc/mp1/status have no duplicates.

Note on read() implementation: implementing read () call can be particularly

challenging, as you need to deal with offsets. Kernel provides a nice interface to
help you iterate through the linked list that you can use to implement the read ()
operation.

Step 5: At this point, you should be able to write a simple user space application that
registers itself in the module. Your test application can use the function getpid() to obtain its
PID. You can open and write to the Proc Filesystem entry using fopen() and fprintf(). You
can read the entry using getc () and putc(). Your program should run for at least 10 seconds
so that the kernel module can update the user time for it. You can find the starter code in
userapp.c of your GitHub submission repository.

Step 6: The next step should be to create a Linux Kernel Timer that wakes up every 5
seconds. Timers in the kernel are single shot (i.e., not periodic). Expiration times for Timers in
Linux are expressed in jiffies, and they refer to an absolute time since boot. Jiffy is a unit of time
that expresses the number of clock ticks of the system timer in Linux. The conversion between
seconds and jiffies is system dependent and can be done using the constant HZ (i.e., 2 * HZ =
number of jiffies in 2 seconds). The global variable jiffies can be used to retrieve
the current time elapsed since boot expressed in jiffies. Definitions for Kernel Timer are
available in 1inux/timer .h.

Step 7: Next you will need to implement the work function. At the timer expiration, the timer
handler must use the Workqueue API to schedule the work function to be executed as soon as
possible. To test your code you can use printk() to print to the console every time the work
function is executed by the workqueue worker thread. You can see these messages by using
the command dmesg in the command line. Definitions for Kernel Workqueue are available in
linux/workqueue.h.

Step 8: Now, you will need to implement the updates to the CPU Times for the processes in
the Linked List. You may use the helper function int get_cpu_use(int pid, unsigned
long* cpu_value) as a starting point. The function is available in mp1_given.h of your
GitHub submission repository. This function returns 0 if the value was successfully obtained
and returned through the parameter cpu_value, otherwise it returns -1. As part of the update
process, you will need to use locks (definitions available in 1inux/mutex.h) to protect the
Linked List and any other shared variables accessed by the three contexts (kernel, process,
interrupt context). The advantage of using a two-half approach is that in most cases the locking
will be donein the work function and not in the timer interrupt. If a registered process
terminates, get_cpu_use will return -1. In this case, the registered process should be
removed from the linked list.

Note on consistency: when an update happens between read () calls, it is
acceptable to read slightly inconsistent data. However, your kernel must stay robust
and should give data in the correct format.

Step 9: Finally you should check for memory leaks and make sure that everything is properly
released before the module is unloaded. Please keep in mind that you need to stop any
asynchronous entity running (e.g Timers, Workqueues, etc.) before releasing other resources.
At this point, your kernel module should be largely done. Now you can implement the test
application and have some additional testing of your code.

Note on Code Quality

Please note that the code quality of each MP will also affect your grade. In MP1, code quality
accounts for 10% of the total score.

You can read about the Linux Kernel's requirements for code quality here:
https://www.kernel.orag/doc/html/v5.15/process/4.Coding.html

For MP, we use a relaxed version of the Kernel Code Quality Guideline for grading. For
example, we require:

- Your code should not trigger compiler warnings.

https://www.kernel.org/doc/html/v5.15/process/4.Coding.html

- Properly protect all multithreaded resources with locks.

- Abstract the code appropriately and use functions to split the code.
- Use meaningful variable and function names.

- Write comments for non-trivial code.

We DO NOT require, but encourage you to:
- Adhere to the kernel's code styling guideline

(https://www.kernel.org/doc/html/v5.15/process/coding-style.html)
- Compile your code with -W/ -Wall flag.

Here is some advice:

- Your code should include comments where appropriate. It is not a good idea to repeat
what the function does using pseudo-code, but instead, provide a high-level overview of
the function, including any preconditions and post-conditions of the algorithm. Some
functions might need only 1-2 lines of comments, while others might needa paragraph.

- Also, your code must be split into functions, even if these functions contain no
parameters. This is a common situation in kernel modules because most of the variables
are declared as global, including but not limited to data structures, state variables, locks,
timers, and threads.

- An important aspect of kernel code readability is to show whether a function holds the
lock for a data structure or not. Different conventions are usually used. A common

convention is to start the function with the character _ if the function does not hold the
lock of a data structure.

- In kernel coding, performance is a very important issue; usually, the code uses macros
and preprocessor commands extensively. Proper use of macros and identifying possible
situations where they should be used is important in kernel programming.

- Finally, in kernel programming, the use of the goto statement is not rare. A good
example of this is the implementation of the Linux scheduler function schedule(). In
this case, the use of the goto statement improves readability and/or performance.
“Spaghetti code” is never a good practice.

Compile and Test Your Code

To test your kernel module, you can try loading, unloading, and running it in the MPO VM. The
following commands may be helpful:

https://www.kernel.org/doc/html/v5.15/process/coding-style.html

Shell

inserting kernel module
insmod mp1.ko

removing kernel module
rmmod mp1.ko

registering PID 1 to the module
echo "1" > /proc/mp1/status

listing current processes and user times
cat /proc/mp1/status

print the kernel debug/printed messages
dmesg

Submit Your Result

Here are the steps to accept and submit your MP.

- Open the link https://classroom.github.com/a/JnHSo03] and log in using your GitHub
account.

- Find your name in the student list and click it to accept the assignment. Please
double-check your name and email address before accepting the assignment (If you
choose another’s name by mistake, please contact TA).

- If you can't find your name in the list, please contact TA

- Arepo named cs423-uiuc/mp1-<GitHubID> will be automatically created for you
with the starter code in it.

- Your kernel module must be compiled to mp1 . ko, and your test application must be
compiled to userapp. Push your code to your repo before the deadline. We will grade
your last commit before the deadline.

- Please also edit the README file to briefly describe how you implement the
functionalities. e.g., how the user interacts with the kernel module with Proc File System,
how you store process information using kernel list, how you implement periodical tasks
using Timer and Workqueue, etc. If you have some special implementation you think is
worth mentioning, please also include that. Don’t make it too long, your description
doesn’t need to be very detailed. Please upload the README to your GitHub repo.

https://classroom.github.com/a/JnHSoo3j

SWE Good Practice

Use small and frequent commits: Instead of working for three days and committing 500
lines at once, commit every time you finish a small, logical piece of work. If you break
something, it is also much easier to roll back.

Use Conventional Commits: e.g., “feat: return registered processes.”
https://www.conventionalcommits.org/en/v1.0.0/

Maintain a clean repo with .gitignore: 1) Exclude system junks like .DS_store and
Thumbs.db, 2) no environment files like clang metadata, and 3) skip any
program-generated files like your kernel module

https://www.conventionalcommits.org/en/v1.0.0/

	CS423 Spring 2026 MP1: Introduction to Linux Kernel Programming
	Overview
	Goals

	Before you start
	What you need
	Introduction

	Problem Description
	Implementation Challenges
	Implementation Overview
	Note on Code Quality
	Compile and Test Your Code
	Submit Your Result
	SWE Good Practice

