
CS 423: Operating Systems Design

CS 423Operating System Design:
Introduction to Linux Kernel Programming 

(MP4 Walkthrough)

Jack Chen
Some content taken from a previous year's walkthrough by Prof. Adam Bates



CS 423: Operating Systems Design

Take stable snapshots before starting this MP

Your security module will affect kernel boot
Work incrementally
Start with empty functions, add logic in small doses

Preliminaries



CS 423: Operating Systems Design

1. Connect to school vpn
2. Login https://vc.cs.illinois.edu/ui/
3.

How to Take a SnapShot

https://vc.cs.illinois.edu/ui/


CS 423: Operating Systems Design

● Understand Linux Security Modules

● Understand basic concepts behind Mandatory 
Access Control (MAC)

● Understand and use filesystem extended attributes

● Add custom kernel configuration parameters and 
boot parameters

● Derive a least privilege policy for /usr/bin/passwd

Goals of this MP



CS 423: Operating Systems Design

● Came out of a presentation that the NSA did in 2001
○ Security Enhanced Linux (SELinux)

● Kernel provided support for Discretionary Access 
Control

● Did not provide framework for different security models 
w/o changes to core kernel code

● Linux Security Modules (LSM) proposed as a solution
○ Not to be fooled by the term “module”
○ LSMs are NOT* loadable at runtime

Linux Security Module



CS 423: Operating Systems Design

Hooks inserted throughout important functionalities of the kernel

How Do LSMs Work?



CS 423: Operating Systems Design

In the kernel context just before the kernel fulfills a request

In which context does the LSM run?



CS 423: Operating Systems Design

● Major LSM
○ Only one major LSM can run in the system
○ Examples: SELinux, Smack, etc.
○ Can access opaque security fields (blobs)

■ Data structures reserved only for the use 
of major LSMs

● Minor LSM
○ Can be stacked
○ Does not have access to the security blobs
○ Examples: YAMA

Major and Minor LSM



CS 423: Operating Systems Design

● Reserved fields in various kernel data structures
○ task_struct, inode, sk_buff, file, linux_binprm

● Controlled by the major security module running
○ struct cred is the security context of a thread
○ task->cred->security is the tasks’s security blob
○ A task can only modify its own credentials

■ No need for locks in this case!
■ Need rcu read locks to access another tasks’s 

credentials

What is “Security Blobs” ?



CS 423: Operating Systems Design

● Access rights are based on regulations defined by a 
central authority

● Strictly enforced by the kernel
● Label objects by sensitivity

○ e.g., unclassified, confidential, secret, top secret
● Label users (subjects) by, e.g.,  clearance
● Grant access based on combination of subject and object 

labels

MAC, Mandatory Access Control



CS 423: Operating Systems Design

● We will developed a major security module
● To keep things simple, we will focus on tasks that carry 

the label target
● We will focus on only labeling inodes

○ We can use the security blobs
○ We will also use extended filesystem attributes

● How do we label our tasks then?
○ We will use the inode label of the binary that is used 

to launch the process

Labeling our System



CS 423: Operating Systems Design

● Provides custom file attributes that are not interpreted by 
the file system

● Convention: attributes under the prefix security will be 
used for interpretation by an LSM

● We will be using security.mp4
● Set an attribute:

○ setfattr -n   security.mp4     -v   target   target_binary
○ setfattr -n <prefix>.<suffix> -v <value> <file>

● List attributes:
○ getfattr -d -m - <file>

File System Extended Attributes



CS 423: Operating Systems Design

● Label management
○ How to assign and maintain labels
○ How to transfer labels from inodes to tasks

● Access control
○ Who gets to access what
○ Enforce MAC policy

● Kernel configuration
○ Kconfig environment
○ Change boot parameters

MP4 Challenges



CS 423: Operating Systems Design

● Customize kernel configuration using the Kconfig 
environment

● Go to the linux source code folder in MP0
● Add custom config option to security/mp4/Kconfig

Step 1: Compile your kernel



CS 423: Operating Systems Design

● Now when you run make oldconfig, make will ask you 
whether to enable
○ CONFIG_SECURITY_MP4_LSM

● You can also use it for static compiler macros in your 
code. e.g.

Step 1: Compile your kernel

#ifdef CONFIG_SECURITY_MP4_LSM
void do_something(void) { printf(“MP4 active\n"); }
#else
void do_something(void) { }
#endif



CS 423: Operating Systems Design

● You can also use make menuconfig to see your config 
option visually

> make menuconfig
In linux source code root level

● You might want to turn DEBUG_INFO off to speed up the 
generation of the .deb files

Step 1: Compile your kernel



CS 423: Operating Systems Design

● After the first compilation, you do not need to recompile 
the entire kernel again

● Reminder: make clean removes all of the object files and 
will cause the entire kernel to be recompiled

● For incremental builds, just: make
● To produce .deb files again:
● make bindeb-pkg LOCALVERSION=…

Step 1: Compile your kernel



CS 423: Operating Systems Design

● Next we want to enable the mp4 module as the major 
security module in our system

● The kernel accepts the key-value pair security=<module> 
as part of its boot parameters

● Update /etc/default/grub:
GRUB_CMDLINE_LINUX_DEFAULT=“security=mp4”

● sudo update-grub (Don’t forget this)

Step 1: Boot params



CS 423: Operating Systems Design

● We will implement our module in three steps:

1. Register the module and enable it as the only major 
security module (Provided to you at no cost in mp4.c)

2. Implement the labels initialization and management
3. Implement the mandatory access control logic

● We provide you with helper functions in mp4_given.h

● Use pr_info, pr_err, pr_debug, pr_warn macros

● #define pr_fmt(fmt) "cs423_mp4: " fmt

Step 2.0: Implementation



CS 423: Operating Systems Design

● We provide you with the startup code to get your started
● We will implement the following security hooks:

Step 2.1: Startup

static struct security_hook_list mp4_hooks[] = {

    LSM_HOOK_INIT(inode_init_security, mp4_inode_init_security),
    LSM_HOOK_INIT(inode_permission, mp4_inode_permission),

    LSM_HOOK_INIT(bprm_set_creds, mp4_bprm_set_creds),

    LSM_HOOK_INIT(cred_alloc_blank, mp4_cred_alloc_blank),
    LSM_HOOK_INIT(cred_free, mp4_cred_free),
    LSM_HOOK_INIT(cred_prepare, mp4_cred_prepare)
};



CS 423: Operating Systems Design

Step 2.2: Label Semantics - Test Points!



CS 423: Operating Systems Design

if (strcmp(cred_ctx, "read-only") == 0)
      return MP4_READ_OBJ;
else if (strcmp(cred_ctx, "read-write") == 0)
      return MP4_READ_WRITE;
else if (strcmp(cred_ctx, "exec") == 0)
      return MP4_EXEC_OBJ;
else if (strcmp(cred_ctx, "target") == 0)
      return MP4_TARGET_SID;
else if (strcmp(cred_ctx, "dir") == 0)
      return MP4_READ_DIR;
else if (strcmp(cred_ctx, "dir-write") == 0)

return MP4_RW_DIR;
else
      return MP4_NO_ACCESS;

Step 2.2: Label Map



CS 423: Operating Systems Design

● We are interested in three operations:
1. Allocate/free/copy subject security blobs
2. When a process starts, check the inode of the binary 

that launches it.
a. If it is labeled with target, mark task_struct 

as target
b. mp4_bprm_set_creds

3. Assign read-write label to inodes created by the 
target application

a. mp4_inode_init_security

Step 2.2: Label Management



CS 423: Operating Systems Design

● Given an struct inode *, we can ask for its struct dentry *
● You can query some kernel functions if there is something 

you need to know
○ This is important if you don’t know how much memory 

to allocate
○ Watch for the ERANGE errno

● It is very important to put back a dentry after you use it
○ dput(dentry);

Step 2.2: Obtain Inode’s extended Attributes



CS 423: Operating Systems Design

● Translate label semantics into code
○ mp4_inode_permission

● Operation masks are in linux/fs.h
● Obtain current task’s subject blob using current_cred()
● To speed things up during boot, we want to skip certain 

directories
○ Obtain inode’s path (hint: use dentry!)
○ Call mp4_should_skip_path from mp4_given.h

Step 2.3: Implement Access Control



CS 423: Operating Systems Design

Step 2.3: Implement Access Control



CS 423: Operating Systems Design

Step 2.3: Implement Access Control 

● You MUST log attempts that are denied access
● To minimize the chances of bricking your machine:

○ Always take a snapshot that takes you back to 
stable state

○ Implement AC logic, but always return access 
granted and print appropriate messages

○ Check you messages, if all is according to plan, 
update your code to return appropriate values

○ Test your return codes



CS 423: Operating Systems Design

Step 3: Testing

● Test your security module on simple functions
○ vim, cat, etc.
○ avoid operation critical programs (ls, cd, bash, etc.)
○ Note: to grant read access to /home/netid/file.txt …

■ must have access to all three of /home, 
/home/netid/, and /home/netid/file.txt

● Always restore your system state to a place where all 
labels are removed before you reboot



CS 423: Operating Systems Design

Step 3: Testing

● Suggested method of testing:
○ Create two scripts: mp4_test.perm and 

mp4_test.perm.unload
○ source first script to load, source the other to 

unload
● In mp4_test.perm:

○ setfattr -n security.mp4 -v target /usr/bin/cat
○ …
○ setfattr -n security.mp4 -v read-only /home/netid/file.txt

● In mp4_test.perm.unload, undo everything before 
reboot:

○ setfattr -x security.mp4 /usr/bin/cat
○ ..
○ setfattr -x security.mp4 /home/netid/file.txt



CS 423: Operating Systems Design

Final Step: Obtain Policy
● Goal is to obtain least privilege policy for the program 

/usr/bin/passwd
● DO NOT TRY TO CHANGE THE PASSWORD FOR 

YOUR NETID ACCOUNT

● Create dummy user account and change its password
● Use strace to obtain the set of files and access requests 

that passwd uses
○ sudo apt install strace

● Generate passwd.perm and passwd.perm.unload 
based on the outcome

● Test your module’s enforcement of the policy!



CS 423: Operating Systems Design

Final Tips 

● Where to turn when things get confusing?

○ There are 5 other LSM’s in the source code of 
your kernel… use them as a reference!
■ AppArmor, SELinux, Smack, TOMOYO 

Linux, Yama
■ E.g. linux/security/yama/yama_lsm.c

○ The bookkeeping your LSM will need to do is very 
similar to what others need to do, because you 
are using the same interface.



CS 423: Operating Systems Design

Final Tips 

● Your mp4_cred_alloc_blank hook will share many 
similarities with selinux_cred_alloc_blank… just don’t 
blindly copy code without understanding it first, or 
you’re going to create even more trouble for yourself!



CS 423: Operating Systems Design

Bye 


