CS 423
Operating System Design:
L og-Structured File Systems

Professor Tianyin Xu

MP | /MP2/Midterm Stats

MPO/1| MP1/10 | MIDTERM /40 | MP2 /10
max 1 10 39 10
min 0 4 19.5 0
average| 0.939 8.924 32.053 7.493
median 1 10 32.75 8.595
P.75 1 10 35 10
std 0.240 1.875 4.259 3.406

CS 423: Operating Systems Design

I

Recap

= File
= Disk block
= Inode

« T0 read/write a file, we have to find the
inode of the file first.

« Sequential reads/writes are MUCH faster than
random reads/writes

« Why?

CS 423: Operating Systems Design

Alternate figure, same basic idea

Inode Array

CS 423: Operating Systems Design

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

~| Tripl. Indirect Ptr.

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Computers Circa 1991 [

Disk bandwidth is improving rapidly
Computers have more memory (up to 128 MB)
And, alas, disk seek times are ... still dog slow!

= The overhead was becoming larger now (as
the bandwidth is higher..)

- What can we do to solve the problem?

= Why not we always do sequential I/0?

CS 423: Operating Systems Design

[hought Experiments

CS 423: Operating Systems Design

Let's do a design

CS 423: Operating Systems Design

Debates
The LFS Flame Wars of the 1990s

* In two papers (one in 1993, one in 1995) Seltzer compared FFS to
a BSD port of Sprite’s LFS, ﬂndmg that:
* LFS is great for workloads with:
* frequent small writes
* read patterns that are amenable to hitting in the buffer cache
» enough idle time for cleaning to run without hurting foreground tasks
 LFS is not great when:

» the disk is full (because the cleaner must read many segments just to
find a little free space)

* writes are too random (because dead sFace will be spread evenly
throughout the segments forcing the cleaner to read many segments
to free space)

 Qusterhout (who wrote Sprite LFS) claimed that:
« BSD LFS was poorly implemented and had performance bugs

* The benchmarks used to evaluated BSD LFS were unfair (e g the
compilation benchmark was CPU bound and doesn't provide much insight

into file system behavior; the transaction processing workload contains a
pathological number of random writes)

 FFS fragmentation can hurt performance just as much as LFS cleaning

CS 423: Operating Systems Design

-
O
-
o,
-
C
Ll

CS 423: Operating Systems Design

~lash memory

= No need for sequential writes

- just need to find unused blocks
= Can do 1->0 rewrites

- Maintain a bitmap of used blocks at fixed block
= Lots of complexity

- Bits wear out, read disruption, etc

- Who should deal with those complexity?

CS 423: Operating Systems Design

