
CS 423: Operating Systems Design

Tianyin Xu

Thanks Prof. Adam Bates for the slides.

CS 423
Operating System Design:

File System Implementation

CS 423: Operating Systems Design

Grading

2

■ Still letter grade, instead of N/NP
■ You can change it to CR/NC
■ Will be very generous in grading
■ Do your best and you will have good grade

■ If you are not able to finish, we can do
“incomplete”

■ Details in my Piazza post.

CS 423: Operating Systems Design

Final grading decision

3

Process
control
block

...

Open
file

pointer
array

Open file
table

(systemwide)
Memory Inode

Disk
inode

Data structures in a typical file system:

CS 423: Operating Systems Design

Directory Structure

4

■ maps symbolic names into logical file
names
■ search
■ create file
■ list directory
■ backup, archival, file migration

CS 423: Operating Systems Design

Single-level Directory

5

CS 423: Operating Systems Design

Tree-Structured Directories

6

■ arbitrary depth of directories
■ leaf nodes are files
■ interior nodes are directories
■ path name lists nodes to traverse to find

node
■ use absolute paths from root
■ use relative paths from current working

directory pointer

CS 423: Operating Systems Design 7

Tree-Structured Directories

CS 423: Operating Systems Design

Acyclic Graph Structured Dir.’s

8

CS 423: Operating Systems Design

Symbolic Links

9

■ Symbolic links are different than regular links (often
called hard links). Created with ln -s

■ Can be thought of as a directory entry that points to
the name of another file.

■ Does not change link count for file
■ When original deleted, symbolic link remains

■ They exist because:
■ Hard links don’t work across file systems
■ Hard links only work for regular files, not directories

Hard link(s) Symbolic Link

Contents of file Contents of file
direct

direct

directsymlink

CS 423: Operating Systems Design

Disk Layout for a FS

10

■ Data Structures:
■ File data blocks: File contents
■ File metadata: How to find file data blocks
■ Directories: File names pointing to file metadata
■ Free map: List of free disk blocks

Super
block

File metadata
(i-node in Unix) File data blocksBoot

block

Disk layout in a typical file system:

CS 423: Operating Systems Design

Disk Layout for a FS

11

■ Superblock defines a file system
■ size of the file system
■ size of the file descriptor area
■ free list pointer, or pointer to bitmap
■ location of the file descriptor of the root directory
■ other meta-data such as permission and various times

■ For reliability, replicate the superblock

Super
block

File metadata
(i-node in Unix) File data blocksBoot

block

Disk layout in a typical file system:

CS 423: Operating Systems Design

Design Constraints

12

• How can we allocate files efficiently?

• For small files:

• Small blocks for storage efficiency

• Files used together should be stored together

• For large files:

• Contiguous allocation for sequential access

• Efficient lookup for random access

• Challenge: May not know at file creation where our
file will be small or large!!

CS 423: Operating Systems Design

Design Challenges

13

• Index structure

• How do we locate the blocks of a file?

• Index granularity

• How much data per each index (i.e., block size)?

• Free space

• How do we find unused blocks on disk?

• Locality

• How do we preserve spatial locality?

• Reliability

• What if machine crashes in middle of a file system op?

CS 423: Operating Systems Design

File Allocation

14

■ Contiguous
■ Non-contiguous (linked)
■ Tradeoffs?

CS 423: Operating Systems Design

Contiguous Allocation

15

■ Request in advance for the size of the file
■ Search bit map or linked list to locate a space
■ File header

■ first sector in file
■ number of sectors

■ Pros
■ Fast sequential access
■ Easy random access

■ Cons
■ External fragmentation
■ Hard to grow files

CS 423: Operating Systems Design

Linked Files

16

■ File header points to 1st
block on disk

■ Each block points to next
■ Pros

■ Can grow files dynamically
■ Free list is similar to a file

■ Cons
■ random access: horrible
■ unreliable: losing a block

means losing the rest

File header

null

. . .

CS 423: Operating Systems Design

Linked Allocation

17

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

18

■ Linked list index structure
■ Simple, easy to implement
■ Still widely used (e.g., thumb drives)

■ File table:
■ Linear map of all blocks on disk
■ Each file a linked list of blocks

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

19

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

20

■ Pros:
■ Easy to find free block
■ Easy to append to a file
■ Easy to delete a file

■ Cons:
■ Small file access is slow
■ Random access is very slow
■ Fragmentation
■ File blocks for a given file may be scattered
■ Files in the same directory may be scattered
■ Problem becomes worse as disk fills

CS 423: Operating Systems Design

Indexed File Allocation

21

Link full index
blocks together
using last entry.

CS 423: Operating Systems Design

Multilevel Indexed Files

22

Multiple levels of index blocks

CS 423: Operating Systems Design

UNIX FS Implementation

23

File position
R/W

Pointer to inode

File position
R/W

Pointer to inode

Mode

Link Count

UID

GID

File size

Times
Address of

first 10
disk blocks

Single Indirect

Double Indirect

Triple Indirect

inodeOpen file descriptionParent
File descriptor
table

Child
File
descriptor
table

Unrelated process
File descriptor table

23

CS 423: Operating Systems Design 24

Alternate figure, same basic idea

Berkeley FFS / UNIX FS

CS 423: Operating Systems Design

Berkeley FFS / UNIX FS

25

■ “Fast File System”
■ inode table
■ Analogous to FAT table

■ inode
■ Metadata
■ File owner, access permissions, access times, …

■ Set of 12 data pointers
■ With 4KB blocks => max size of 48KB files

■ Indirect block pointers
■ pointer to disk block of data pointers
■ w/ indirect blocks, we can point to 1K data blocks => 4MB (+48KB)

■ … but why stop there??

CS 423: Operating Systems Design

Berkeley FFS / UNIX FS

26

■ Doubly indirect block pointer
■ w/ doubly indirect blocks, we can point to

1K indirect blocks
■ => 4GB (+ 4MB + 48KB)

■ Triply indirect block pointer
■ w/ triply indirect blocks, we can point to 1K

doubly indirect blocks
■ 4TB (+ 4GB + 4MB + 48KB)

CS 423: Operating Systems Design

Berkeley FFS Asym. Trees

27

■ Indirection has a cost. Only use if needed!
■ Small files: shallow tree

■ Efficient storage for small files
■ Large files: deep tree

■ Efficient lookup for random access in
large files

■ Sparse files: only fill pointers if needed

CS 423: Operating Systems Design

Berkeley FFS Locality

28

■ How does FFS provide locality?
■ Block group allocation
■ Block group is a set of nearby cylinders
■ Files in same directory located in same group
■ Subdirectories located in different block groups

■ inode table spread throughout disk
■ inodes, bitmap near file blocks

■ First fit allocation
■ Property: Small files may be a little fragmented, but large

files will be contiguous

CS 423: Operating Systems Design

Berkeley FFS Locality

29

CS 423: Operating Systems Design

Berkeley FFS Locality

30

■ How does FFS provide locality?
■ Block group allocation
■ Block group is a set of nearby cylinders
■ Files in same directory located in same group
■ Subdirectories located in different block groups

■ inode table spread throughout disk
■ inodes, bitmap near file blocks

■ First fit allocation
■ Property: Small files may be a little fragmented, but large

files will be contiguous

CS 423: Operating Systems Design

Berkeley FFS Locality

31

“First Fit” Block Allocation:

CS 423: Operating Systems Design

Berkeley FFS Locality

32

“First Fit” Block Allocation:

CS 423: Operating Systems Design

Berkeley FFS Locality

33

“First Fit” Block Allocation:

CS 423: Operating Systems Design

Berkeley FFS / UNIX FS

34

■ Pros
■ Efficient storage for both small and large files
■ Locality for both small and large files
■ Locality for metadata and data

■ Cons
■ Inefficient for tiny files (a 1 byte file requires both an inode

and a data block)
■ Inefficient encoding when file is mostly contiguous on disk

(no equivalent to superpages)
■ Need to reserve 10-20% of free space to prevent

fragmentation

CS 423: Operating Systems Design

Linux Filesystems

35

■ The ext family of filesystems leverage many of the
same concepts.
■ ext (’92): introduces VFS support, 2GB max FS size
■ ext2 (’93): introduces attributes and symbolic

links, max file size is 2 GB and 2 TB FS, reserved
disk space for root

■ ext3 (’01): introduces journaling, supports 2^32
blocks (up to max file of 2 TB, FS of 32 TB)

■ ext4 (’08): 2^48 block addressing, extent support

CS 423: Operating Systems Design

File Systems In Practice

36

