CS 423
Operating System Design:
Flle System Implementation

)anyin Xu

Thanks Prof. Adam Bates for the slides.

CS 423: Operating Systems Design

Grading

« Still letter grade, instead of N/NP
= YOou can change it to CR/NC
= Will be very generous in grading
= Do your best and you will have good grade

= If you are not able to finish, we can do
“incomplete”

= Details in my Piazza post.

CS 423: Operating Systems Design

Final grading decision

Data structures in a typical file system:

Process Open file
control table Memory Inode
block (systemwide)
Disk
Open | inode
file
R
pointer
array |

CS 423: Operating Systems Design

Directory Structure

= Maps symbolic names into logical file

Names

= Search

= Create file

= list directory

= backup, archival, file migration

CS 423: Operating Systems Design

Directory

I M Uil i

CS 423: Operating Systems Design

Tree-Structured Directories][

=« arbitrary depth of directories
« leaf nodes are files
= interior nodes are directories

« path name lists nodes to traverse to find
node

= Use absolute paths from root

= Use relative paths from current working
directory pointer

CS 423: Operating Systems Design

Tree-Structured Directories

Neme Name
of of
H Mt ycto ry Directory
. . Nf‘am e Nfe me Name
0 0 of
Subdirectories Digetory | Ditegy | e
/
Name Name Name Name Name Name Kame Name Name Name
of of of of of of of of of of
File File File File File File File File File File
I I I I I I I | | |
Filea Files Files

CS 423: Operating Systems Design

Acyclic Graph Structured Dir.'s 1

Na
of of
Name
of
- Fijle
Files

CS 423: Operating Systems Design

Symbolic Links

« Symbolic links are different than regular links (often
called hard links). Created with In -s

= Can be thought of as a directory entry that points to
the name of another file.

« Does not change link count for file
- When original deleted, symbolic link remains

= They exist because:
- Hard links don’t work across file systems
- Hard links only work for regular files, not directories

Hard link(s) Symbolic Link

CS 423: Operating Systems Design

Disk Layout for a FS

Disk layout in a typical file system:

Boot Super File metadata ,
block (1-node 1n Unix) File data blocks

« Data Structures:
= File data blocks: File contents
« File metadata: How to find file data blocks
« Directories: File names pointing to file metadata
= Free map: List of free disk blocks

CS 423: Operating Systems Design

Disk Layout for a FS

Disk layout in a typical file system:

Boot Super File metadata ,
block (1-node 1n Unix) File data blocks

= Superblock defines a file system
= Size of the file system
= Size of the file descriptor area
- free list pointer, or pointer to bitmap
= location of the file descriptor of the root directory
- other meta-data such as permission and various times

« For reliability, replicate the superblock

CS 423: Operating Systems Design

Design Constraints

* How can we allocate files efficiently?
* For small files:
« Small blocks for storage efficiency
* Files used together should be stored together
* For large files:
« Contiguous allocation for sequential access
« Efficient lookup for random access

« Challenge: May not know at file creation where our
file will be small or large!!

CS 423: Operating Systems Design

Design Challenges

 |ndex structure

« How do we locate the blocks of a file?

 Index granularity

* How much data per each index (i.e., block size)?

* Free space

* How do we find unused blocks on disk?

Locality

« How do we preserve spatial locality?

Reliability

« What if machine crashes in middle of a file system op?

CS 423: Operating Systems Design

Flle Allocation

= Contiguous
=« Non-contiguous (linked)
« Iradeoffs?

CS 423: Operating Systems Design

Contiguous Allocation

« Request in advance for the size of the file
« Search bit map or linked list to locate a space

= File header
. first sector in file
= humber of sectors

= Pros

- Fast sequential access
- Easy random access

« Cons
- External fragmentation
- Hard to grow files

CS 423: Operating Systems Design

| Inked Files

= File header points to 1st
block on disk

« Each block points to next

« Pros
- Can grow files dynamically
- Free list is similar to a file

« Cons
- random access: horrible
= unreliable: losing a block
means losing the rest

CS 423: Operating Systems Design

File \header
\

null

| Inked Allocation

Directory

File

Address —

CS 423: Operating Systems Design

>

\|
Dataj\

—

MS File Allocation Table (FAT) 1

« Linked list index structure

« Simple, easy to implement

=« Still widely used (e.g., thumb drives)
= File table:

« Linear map of all blocks on disk

« Each file a linked list of blocks

CS 423: Operating Systems Design

MS File Allocation Table (FAT) 1

MFT Data Blocks

0

1

2

Z “ file 9 block 3

5

6

/

8

9 —- file 9 block 0
10 — file 9 block 1
11 file 9 block 2
:% file 12 block 0
14
15 -
:g < file 12 block 1
: g B file 9 block 4
20

CS 423: Operating Systems Design

MS File Allocation Table (FAT) I

Main (C:]) Properties

- Pros: General Tools |Sharing|
— Emor-checking status
« Easy to find free block L Lt ot
« Easy to append to a file
] — Backup status
[| Ea Sy tO delete a fl Ie e mfggﬂ :ﬁ: sug:t:ﬁst% rcii.;i;n.ermine when you last
Backup Now...
— Defragmentation status
[| CO n S : w\’ You last defragmented this drive 2 day(s) ago.
= Small file access is slow DS
= Random access is very slow —

« Fragmentation
= File blocks for a given file may be scattered
« Files in the same directory may be scattered
= Problem becomes worse as disk fills

CS 423: Operating Systems Design

Indexed File Allocation 1

file block = #sectors

indexblock = #sectors

link
Link full index k =

blocks together \
using last entry. S

CS 423: Operating Systems Design

Multilevel Indexed Files 1

2nd level ndex file block = #sectors

indexblock = #sectorj‘ z

link

link
Multiple levels of index blocks

CS 423: Operating Systems Design

UNIX FS Implementation | T

Parent Open file description inode
File descriptor : » Mode
table L File position
R/W Link Count
Pointer to inode
UID
File position
i R/W GID
C.h”d Pointer to inode _ _
File File size
descriptor :
table Times /
Address of
first 10
disk blocks
Single Indirect
Double Indirect .
Unrelated process Triple Indirect
File descriptor table

CS 423: Operating Systems Design

Alternate figure, same basic idea

Inode Array

CS 423: Operating Systems Design

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

~| Tripl. Indirect Ptr.

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks

Berkeley FFS / UNIX FS

« Fast File System”
= inode table
= Analogous to FAT table
= inode
= Metadata
« File owner, access permissions, access times, ...
« Set of 12 data pointers
= With 4KB blocks => max size of 48KB files
« Indirect block pointers
= pointer to disk block of data pointers
= W/ indirect blocks, we can point to 1K data blocks => 4MB (+48KB)
= ... but why stop there??

CS 423: Operating Systems Design

Berkeley FFS / UNIX FS

= Doubly indirect block pointer

= W/ doubly indirect blocks, we can point to
1K indirect blocks

« => 4GB (+ 4MB + 48KB)
« [riply indirect block pointer

= W/ triply indirect blocks, we can point to 1K
doubly indirect blocks

« 4TB (+ 4GB + 4MB + 48KB)

CS 423: Operating Systems Design

Berkeley FFS Asym. Trees

« Indirection has a cost. Only use if needed!
« Small files: shallow tree

= Efficient storage for small files
« Large files: deep tree

« Efficient lookup for random access in
large files

= Sparse files: only fill pointers if needed

CS 423: Operating Systems Design

Berkeley FFS Locality

= How does FFS provide locality?
= Block group allocation

= Block group is a set of nearby cylinders

=« Files in same directory located in same group

= Subdirectories located in different block groups
=« iNode table spread throughout disk

=« inodes, bitmap near file blocks

CS 423: Operating Systems Design

Berkeley FFS Localrty

Block Group 0

Block Group 1

Block Group 2

CS 423: Operating Systems Design

Berkeley FFS Locality

=« How does FFS provide locality?
= Block group allocation
= Block group is a set of nearby cylinders
= Files in same directory located in same group
= Subdirectories located in different block groups
« inode table spread throughout disk
= inodes, bitmap near file blocks
« First fit allocation

« Property: Small files may be a little fragmented, but large
files will be contiguous

CS 423: Operating Systems Design

Berkeley FFS Localrty

“First Fit” Block Allocation:

In-Use Free
Start of Block Block

Block [T T T TTT1]eee
Group

CS 423: Operating Systems Design

Berkeley FFS Localrty

“First Fit” Block Allocation:

Start of Write Two Block File

Block [T T T T TTTTT]eee
Group

CS 423: Operating Systems Design

Berkeley FFS Localrty

“First Fit” Block Allocation:

Start of Write Largf File

Block [TTTTTTTTT T T
Group

CS 423: Operating Systems Design

Berkeley FFS / UNIX FS

« Pros
« Efficient storage for both small and large files
= Locality for both small and large files
« Locality for metadata and data

« Cons

« Inefficient for tiny files (a 1 byte file requires both an inode
and a data block)

« Inefficient encoding when file is mostly contiguous on disk
(no equivalent to superpages)

= Need to reserve 10-20% of free space to prevent
fragmentation

CS 423: Operating Systems Design

Linux Filesystems

« The ext family of filesystems leverage many of the
same concepts.

« ext ("92): introduces VFS support, 2GB max FS size

« ext2 (93): introduces attributes and symbolic
links, max file size is 2 GB and 2 TB FS, reserved
disk space for root

« ext3 ('01): introduces journaling, supports 232
blocks (up to max file of 2 TB, FS of 32 TB)

« ext4 ('08): 2748 block addressing, extent support

CS 423: Operating Systems Design

Flle Systems In Practice

FAT Berkeley FFS NTFS
(Unix FS)
Index Linked list Tree Tree
structure (fixed, assym) | (dynamic)
granularity block block extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality |defragmentation| Block groups Extents
+ reserve Best fit
space defrag

CS 423: Operating Systems Design

