CS 423
Operating System Design:
OS Support for Containers

)anyin Xu

Thanks for Adam Bates and Julie Evans

CS 423: Operating Systems Design

Cloud Computing (Gen 1)

« Dominated by Infrastructure-as-a-Service
clouds (and storage services)

« Big winner was Amazon EC2

« Hypervisors that virtualized the hardware-
software interface

« Customers were responsible for provisioning
the software stack from the kernel up

CS 423: Operating Systems Design 2

FYDErVISOrS 1

Host OS

Guest OS Guest OS Guest OS

Hypervisor/VNMM

Kernel of the Host

CS 423: Operating Systems Design 3

FYPErVISOrS 1

« Strong isolation between different customer’s
virtual machines

« VMM is ‘small’ compared to the kernel... less
LoC means less bugs means (~)more security.

CS 423: Operating Systems Design

FYDPervisors

 ‘Practical’ attacks on laaS clouds relied on side
channels to detect co-location between attacker and

victim VM

« E.g., we could correlate the performance of a shared
resource

« network RTT’s, cache performance

e After co-resident, make inferences
about victim’s activities

—

n/w pings or
~ covert-channels

CS 423: Operating Systems Design

FYPErVISOrS I

« Strong isolation between different customer’s
virtual machines

« VMM is ‘small’ compared to the kernel... less
LoC means less bugs means (~)more security.

* High degree of flexibility... but did most
customers really need it?

CS 423: Operating Systems Design

Cloud Computing (Gen 2) [|

 PaaS: Platform as a Service

 SaaS: Software as a Service

PaaS

[] 1]

s =

H d appl /app Development tool Operatin g systems Serv d g Networking Data center physical
database mana gement, firewalls/security plant/building
business ana lytics

CS 423: Operating Systems Design

New Gen of Cloud Computing | I

 FaaS: Function as a Service

laaS

Customer Managed

Customer Managed
Unit of Scale

Abstracted
by Vendor

CS 423: Operating Systems Design

New Gen of Cloud Computing 1

« Microservices

A monolithic application puts all its
functionality into a single process...

... and scales by replicating the
monolith on multiple servers

9 9
We We
oV oV
|/
S S
e e
oV oV
|/

CS 423: Operating Systems Design

A microservices architecture puts N

each element of functionality into a

separate service...

... and scales by distributing these services
across servers, replicating as needed.

V0N0® L 4I1Ryg

O ®le

5
5
&
4

Enter Containers

» Rather than virtualize both user space and kernel
space... why not just ‘virtualize’ user space!

« Meets the needs of most customers, who don’t
require significant customization of the OS.

« Sometimes called ‘OS virtualization,” which is
highly misleading given our existing taxonomy of
virtualization techniques

* Running natively on host, containers enjoy bare
metal performance without reliance on advanced
virtualization support from hardware.

CS 423: Operating Systems Design

Enter Containers [|

Host OS

Container Container Container

Kernel of the Host

CS 423: Operating Systems Design 11

Enter Containers [

G Looks like a VM

from the inside!

Acts like a Container Container

process from the
outside!

Kernel of the Host

CS 423: Operating Systems Design 12

Containers are processes I

BW\NS
b0 -

’guuA
@

conTainers vs VMs

o. container is ao
group of processes

=
2 e B
1 Linux 1:~.3
Kerne| lots of containers
cOmpu‘rer'

o. virtual machine is
o fake C.ompuh'-"r’

each one has its own
operoting system '

AV |]|©

Linu{ Uindow s BSD
VM VM VM
Computer

confainers use
less RAM

This is becavse they share ¢
Single Linux kernel.

= T con eo.s:l«3 fun
> thousandss of
C ec small containecs ¥

Containers start faster

becavse +hey're processes and
process start fast @

container

j LM my operating
\I;\ System s still bOO'Hns

containers are more
cOmP\ica‘}eJ Yo secure

T'm Yotall 9 isolated
fcom other I\Ns on
this computer ¥

v it really depends
how you configured me ..

VM

containe,

it's harder to figure

out what you can do
in o. coantainer

- just pretend Iﬁ

et Y

R computerV it's easy ¥
T3 T act \ike a. VM Kinde

\2 but there are exceptions..

containers

CS 423: Operating Systems Design

"Container s an old 1dea’”

« You didn’t heard of it cause it was not called
“containers.”

 Linux containers
« BSD]ails

e Solaris Zones

CS 423: Operating Systems Design

Docker’s Big ldea

* Build, Ship, and Run App, Anywhere

» Debug your app, not your environment --
Securely build and share any application,

anywhere

CS 423: Operating Systems Design

Docker's Big ldea

'guL\A EvaNS

@\D(D(K

the big idea: include EVERY dependencuy

Containers package

EVERY dependency
‘l'oge.-Hner

40 make sure this
pogram will run on

your laptop, T'm going
4o Sfrd you every .sing‘e

+ile on My Com puter

2
exaggeration but

it's the basic idea,

o container image is a tacball of a filesystem

Here's uhat's in a typical Rails app's container:

your app's libe + other Ubontu 18.04
code system libracies base 6S
Rails + other
b .
Ruby intecprete— Rubiy gems

how images are buiht
0. start with o base 0s
liinstall program + dependencie s

7. con'FiSure_ it how you want

3. make a tarball of 4he.
WHOLE FILESYSTEM

(this is what ‘docker build’ does)

running an imaae

|. download +he tar bal|
2. Unpac.k i+ into o dired‘ors

3. Qun a program anA p(e+enJ
+hot direc‘l‘ofs is its

whole filesystem

(thig is whet ‘docker run' does)

images let you “iastell”
Programs reallb e“”‘g

Wow, L can get a

Pos‘l'sres test database
running in 4S seconds

Operating Systems Design

OS Support for Containers [

* Linux Containers (LXC):

* chroot
* namespace
« PID, Network, User, IPC, uts, mount
« cgroups for HWV isolation
« Security profiles and policies

« Apparmor, SELinux, Seccomp

CS 423: Operating Systems Design

containers = chroot on steroids][

e chroot changes the apparent root directory for a
given process and all of its children

« An old idea! POSIX call dating back to 1979

« Not intended to defend against privileged attackers...
they still have root access and can do all sorts of
things to break out (like chroot’ing again)

« Hiding the true root FS isolates a lot;

in *nix, file abstraction used extensively || u';1|||"" 1 LJ.‘—GL("
i } A ||

'*'Ul‘ijt“"“ 1 ' J S'P "q'l' il

« Does not completely hide processes, ST

network, etc., though!

CS 423: Operating Systems Design

Chroot

cheoot

o container image is a
tacball of a filesystem

(or Several tarballs : 1 pec layec)

i‘f' someone sends mel
o. tacball of their

fi\eSyg’wv\ hou do
T use +het ‘\'housh?

chroot : trick O progfam into 'H\ir\kir:s
i+ has a gifferent root direc‘l'a(}

$ 1s /path/to/container_filesystem

bin/ etc/ usr/ var/

$ sudo chroot /path/to/container_filesystem /bin/bash

(inside chroot now)
$ 1s /
bin/ etc/ usr/ var/

/ thad!

s our new fake root diredarsf
we Fricked s ¥

ver5 basic way Yo

“run’ o Redis container
Yocball of filesystem
with Redis installed

$ mkdir redis; cd/redis
$ tar -xzf redis.tar
$ chroot $PWD /usr/bin/redis

done! redis is running!

pro blems with jost
Using chroot

— no CPL /memocb limits
— other fuaning processes are.
still visible

P can¥t use the same netwark
port as another process

> LOTS of securc")'s issues

Docker vses pivot- root
* extra i-Sola."‘fan fectures

40 ron containers

pivet-roct is like chroot
but harder to escape from

CS 423: Operating Systems Design

Namespaces

« The key feature enabling containerization!

 Partition practically all OS functionalities so that
different process domains see different things

« Mount (mnt): Controls mount points

« Process ID (pid): Exposes a new set of process IDs
distinct from other namespaces (i.e., the hosts)

« Network (net): Dedicated network stack per
container; each interface present in exactly one
namespace at a time.

CS 423: Operating Systems Design

Namespaces

« The key feature enabling containerization!

 Partition practically all OS functionalities so that
different process domains see different things

* Interprocess Comm. (IPC): Isolate processes from
various methods of POSIX |IPC.

 e.g.,, ho shared memory between containers!

« UTS: Allows the host to present different host/domain
names to different containers.

* There’s also a User ID (user) and cgroup namespace

CS 423: Operating Systems Design

User Namespace

 Like others, can provide a unique UID space to the
container.

* More nuanced though — we can map UID 0 inside the
container to UID 1000 outside; allows processes
inside of container to think they’re root.

« Enables containers to perform administration actions,
e.g., adding more users, while remaining confined to
their namespace.

CS 423: Operating Systems Design

Namespace

'Sul,\A E\‘ RNS
@\Dmr\(

namespoces

inside o container,

'H'\ings look, different
1 Oﬂl\us see. Y

processes in ‘ps aux!

‘H\a‘ﬂs weird...

00

commands that
will look diffecent

—» Ps aux (less processes Y)

— mount 4 oF

= netstat -tulpn
(different open pocts !)

-+ hostname
.. and LOTS more

\«Jkg +hose commands
look. different:

> namesgpaces 2

Tmin o different

PID name space so
‘Ps avx' shows differen
processes

)

container

every process has D
Kinds of namespaces

;
+hege ; @
.

thece's a. defauvlt

(“host”) nome space

“outside o
contoiner” :)us%-'

means using the.

“

ae‘FD.u H namespaces

processes can have
any combination

of nomespaces

Tm Lsing -H'\em

network. name space

\J

containes

but My own mouﬁ

Namespace '

CS 423: Operating Systems Design

Q +his? more of wizardzines.com

Coroups

 Limit, track, and isolate utilization of hardware resources including
CPU, memory, and disk.

 Important for ensuring QoS between customers! Protects against
bad neighbors

* Features:
« Resource limitation
* Prioritization
« Accounting (for billing customers!)

« Control, e.g.,, freezing groups

« The cgroup namespace prevents containers from viewing or
modifying their own group assignment

CS 423: Operating Systems Design

Coroups
SuLlA E‘\éﬁ'\'g C' 6 (OU P S

Eb0(
P(O(E’SSQS can 0Sseé G (g(oup 1S QG
a lot of memory group of processes
+ 10
{6“0‘" @ cg(oup,' yov theee qet 500 MB
P(o(eSS J [O’p RAM ‘|‘o share okay?
USU&“3 you'll assign — F J

pro ce SS

QU\/S I Onlcj
have 16 GR total

° H\e Same csroup
j 0 every process
Cinns in a container. CS“’GS
use 400 moch memory: use Yoo much CPU: cqroups Yrack
ge+ OOM killed e+ slowed down memonj& CPU usage

-ﬁ_ want | GB of % T want ‘l'@ g that ¢ gfoup 1S

(
ALL THE CPU using ‘112@ MB of

process Pfocess
NOPE your limid was '
OO MB you die now - Yoo hit your quota Fhie _ Linux memorb aghi’ Nnow
% x Linux millisecond, you'll have .v l
' °° to wait Linux see §/sysifslcgroupy ¥

pfotes S

: Operating Systems Design

Container Security?

“Containers do not contain.” - Dan Walsh (SELinux contributor)

 In a nutshell, it’s real hard to prove that every feature of
the operating system is hamespaced.

* /sys! /proc! /dev! LKMs!? kernel keyrings!?
* Root access to any of these enables pwning the host

 Solution!? Just don’t forget about MAC; at this point
SELinux pretty good support for namespace labeling.

« SELinux and Namespaces actually synergize nicely; much
easier to express a correct isolation policy over a
coarse-grained namespace than, say, individual processes

CS 423: Operating Systems Design

20

Capabllities

SULIA EVANS

@b0rkK

capabilities

the root user can
do *ang‘thing*

ed Y onYy Cha‘\:\\?oe;l(

file config

Sptj on any
program's memory

sometimes containecs
need privi leged access

T need +o vpdate the
oo route ‘FO(lOlqg"‘
)

00

N that container

shouldnt have
root access thovgh!

containeC
process

¥ Copabi lities @
let you grant
specific permissions
hece's CAP_NET-ADMWN
S

6 yoU can manage
the ne:l’worK e
U
Container

process

CAP_SYS_ADMIN

basicall:j coot access. ’rrc3+v

use a more specific capability?

CAP_NET-ADM(N

for c\\ana ing netwock
set ++i ngS

| capsh -- Pﬂ'f\f

run this in a containe—
to prinf its capabilities

CAP-SYS_PTRACE

strace needs this

CAP- NET-RAW

ping needs this +o send
raw ICHP packets

$ geteap [usc/bin/ping

Shows which capabilif’ie,s
ping is allowed to use

CS 423: Operating Systems Design

seccomp-bpf

ol programs use
system calls

— read 2000 bytes
U fromm this file

Pfosf'am
(here you go =]

Linux

some progr ams have
securi’rb vulnerabilities

(T Know ‘H:mpes

codecs can be
8xp|oi}ed bot T reallb

need to process these
untrosted videos ...

rare\5 vsed syscalls
can help an attacker

5 process- vm. readv
d emor ‘f(M
S eror req vest- keb

another P(‘OC?S.S
° -Fw“mfgs DEFINITELY doesn'+
need access +o read mMemory
from other programs !

seccomp- RPF: make
Linux ron oo ‘\'Mg program
befoce every sydem call

E A<Eboo+ the COM@

P(O cess

the BPF ogram T was
given re‘rt:rned fa\se, /)
thats a no from me "’ Lina

Docker blocks dozeans
of syscalls by defaolt

mosT proarams
don't need those
System calls so T

told Linux +o bloc
‘H’\em ‘FO(ou

Docker

2 ways +o0 block

SCQ(3 Sys+€’m calls

l. Limit oo container's
capabilities

2.Use a seccomp—BP(:
whitelist

USU&\\5 people do both !

CS 423: Operating Systems Design

Linux Security Modules

Complete request

‘ User Level process ‘ User space
V
‘ open system call ‘ Kernel space
| Look up inode
]
| error checks
¥
LSM Module
| DAC checks Policy Engine
¥ "OK with you?" Examine context
| LSM hook | Does request pass policy?
¥ Yes or No Grant or deny

Access

‘ inode \

Figure 1: LSM Hook Architecture

CS 423: Operating Systems Design

DIY container

ful.lp‘ EvanS

vk contoiners acen't maQic

These 15 lines of bash will start a container running the fish shell. Try it!
(download this script at bit.ly/containers-arent-magic)

wget bit.ly/fish-container -0 fish.tar # 1. download the image
mkdir container-root; cd container-root f
tar -xf ../fish.tar # 2. unpack image into a directory
cgroup_id="cgroup_%$(shuf -i 1000-2000 -n 1)" # 3. generate random cgroup name
cgcreate -g "cpu,cpuacct,memory: $cgroup_id" # 4. make a cgroup &
cgset -r cpu.shares=512 "$cgroup_id" #t set CPU/memory limits
cgset -r memory.limit_in_bytes=1000000000 \
"$cgroup_id" it
cgexec -g "cpu,cpuacct,memory: $cgroup_id"” \ # 5. use the cgroup

unshare -fmuipn --mount-proc \ # 6. make + use some namespaces
chroot "$PWD" \ # 7. change root directory
/bin/sh -¢ " #
/bin/mount -t proc proc /proc && # 8. use the right /proc
hostname container-fun-times && # 9. change the hostname
/usr/bin/fish” # 10. finally, start fish!

CS 423: Operating Systems Design

<Soula EVANS
@bd)rK

container kernel featucres

Contoiners are
imP\emeni‘eJ using these
Linux kerel features

\/Ou Can use any of these
on their own. When we use
them all we call it a
“container”.

& p'n/o‘l'_ cootT @

set a process's root

dired'ors 1o o dired‘or5
with the contents of
the container imagqe

X cSrou psS %k

limit memorSlCPU usage

for o group of processes

Onls SO0 MR of
5] T RAM For you

Lianux

¥ Nnamespaces @

ollow processes fo have
their own:

—-» l\e"'NO(k + hostname
-+ PIDg

@ vusers

-» moun“"S
+ more_

¥ seccomp - bp‘F &

security: Pfe,verd’ dangerous
S\/S'\'em callg

% Capabilities %

Securihjz avoid givms root

o.ccessS

% Over\ag F‘\\e Sy stems %

Op*imiza’rwr\ +o reduce.
disk space vsed by
containers which are using
+he same image

Operating Systems Design

Takeaways I

« Container support has existing in Linux for many years

« Foundations of containerization has been around for
decades!

« Automating LXC for portability (i.e., Docker) has
revolutionized cloud computing

« Lasting legacy of containers may be enabling the
Function-as-a-Service revolution... cloud customers
can now pay by the method invocation without any
idle costs.

CS 423: Operating Systems Design

