
CS 423: Operating Systems Design

Tianyin Xu

Thanks for Adam Bates and Julie Evans

CS 423
Operating System Design:
OS Support for Containers

CS 423: Operating Systems Design

Cloud Computing (Gen 1)

2

• Dominated by Infrastructure-as-a-Service
clouds (and storage services)

• Big winner was Amazon EC2

• Hypervisors that virtualized the hardware-
software interface

• Customers were responsible for provisioning
the software stack from the kernel up

CS 423: Operating Systems Design

Hypervisors

3

CS 423: Operating Systems Design

Hypervisors

4

• Strong isolation between different customer’s
virtual machines

• VMM is ‘small’ compared to the kernel… less
LoC means less bugs means (~)more security.

CS 423: Operating Systems Design 5

• ‘Practical’ attacks on IaaS clouds relied on side
channels to detect co-location between attacker and
victim VM

• E.g., we could correlate the performance of a shared
resource

• network RTT’s, cache performance

• After co-resident, make inferences
about victim’s activities

Hypervisors

CS 423: Operating Systems Design 6

• Strong isolation between different customer’s
virtual machines

• VMM is ‘small’ compared to the kernel… less
LoC means less bugs means (~)more security.

• High degree of flexibility… but did most
customers really need it?

Hypervisors

CS 423: Operating Systems Design 7

• PaaS: Platform as a Service

• SaaS: Software as a Service

Cloud Computing (Gen 2)

CS 423: Operating Systems Design 8

• FaaS: Function as a Service

New Gen of Cloud Computing

CS 423: Operating Systems Design 9

• Microservices

New Gen of Cloud Computing

CS 423: Operating Systems Design

Enter Containers

10

• Rather than virtualize both user space and kernel
space… why not just ‘virtualize’ user space?

• Meets the needs of most customers, who don’t
require significant customization of the OS.

• Sometimes called ‘OS virtualization,’ which is
highly misleading given our existing taxonomy of
virtualization techniques

• Running natively on host, containers enjoy bare
metal performance without reliance on advanced
virtualization support from hardware.

CS 423: Operating Systems Design

Enter Containers

11

CS 423: Operating Systems Design

Enter Containers

12

Looks like a VM
from the inside!

Acts like a
process from the

outside!

CS 423: Operating Systems Design

Containers are processes

CS 423: Operating Systems Design

”Container is an old idea”

14

• You didn’t heard of it cause it was not called
“containers.”

• Linux containers

• BSD Jails

• Solaris Zones

CS 423: Operating Systems Design

Docker’s Big Idea

15

• Build, Ship, and Run App, Anywhere

• Debug your app, not your environment --
Securely build and share any application,
anywhere

CS 423: Operating Systems Design

Docker’s Big Idea

16

CS 423: Operating Systems Design

OS Support for Containers

17

• Linux Containers (LXC):

• chroot

• namespace

• PID, Network, User, IPC, uts, mount

• cgroups for HW isolation

• Security profiles and policies

• Apparmor, SELinux, Seccomp

CS 423: Operating Systems Design

containers = chroot on steroids

18

• chroot changes the apparent root directory for a
given process and all of its children

• An old idea! POSIX call dating back to 1979

• Not intended to defend against privileged attackers…
they still have root access and can do all sorts of
things to break out (like chroot’ing again)

• Hiding the true root FS isolates a lot;
in *nix, file abstraction used extensively.

• Does not completely hide processes,
network, etc., though!

CS 423: Operating Systems Design

Chroot

19

CS 423: Operating Systems Design

Namespaces

20

• The key feature enabling containerization!

• Partition practically all OS functionalities so that
different process domains see different things

• Mount (mnt): Controls mount points

• Process ID (pid): Exposes a new set of process IDs
distinct from other namespaces (i.e., the hosts)

• Network (net): Dedicated network stack per
container; each interface present in exactly one
namespace at a time.

• ….

CS 423: Operating Systems Design

Namespaces

21

• The key feature enabling containerization!

• Partition practically all OS functionalities so that
different process domains see different things

• Interprocess Comm. (IPC): Isolate processes from
various methods of POSIX IPC.

• e.g., no shared memory between containers!

• UTS: Allows the host to present different host/domain
names to different containers.

• There’s also a User ID (user) and cgroup namespace

CS 423: Operating Systems Design

User Namespace

22

• Like others, can provide a unique UID space to the
container.

• More nuanced though — we can map UID 0 inside the
container to UID 1000 outside; allows processes
inside of container to think they’re root.

• Enables containers to perform administration actions,
e.g., adding more users, while remaining confined to
their namespace.

CS 423: Operating Systems Design

Namespace

23

CS 423: Operating Systems Design

cgroups

24

• Limit, track, and isolate utilization of hardware resources including
CPU, memory, and disk.

• Important for ensuring QoS between customers! Protects against
bad neighbors

• Features:

• Resource limitation

• Prioritization

• Accounting (for billing customers!)

• Control, e.g., freezing groups

• The cgroup namespace prevents containers from viewing or
modifying their own group assignment

CS 423: Operating Systems Design

cgroups

CS 423: Operating Systems Design

Container Security?

26

“Containers do not contain.” - Dan Walsh (SELinux contributor)

• In a nutshell, it’s real hard to prove that every feature of
the operating system is namespaced.

• /sys? /proc? /dev? LKMs? kernel keyrings?

• Root access to any of these enables pwning the host

• Solution? Just don’t forget about MAC; at this point
SELinux pretty good support for namespace labeling.

• SELinux and Namespaces actually synergize nicely; much
easier to express a correct isolation policy over a
coarse-grained namespace than, say, individual processes

CS 423: Operating Systems Design

Capabilities

CS 423: Operating Systems Design

Seccomp-bpf

CS 423: Operating Systems Design

Linux Security Modules

CS 423: Operating Systems Design

DIY container

30

CS 423: Operating Systems Design

Summary

31

CS 423: Operating Systems Design

Takeaways

32

• Container support has existing in Linux for many years

• Foundations of containerization has been around for
decades!

• Automating LXC for portability (i.e., Docker) has
revolutionized cloud computing

• Lasting legacy of containers may be enabling the
Function-as-a-Service revolution… cloud customers
can now pay by the method invocation without any
idle costs.

