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Cloud Computing (Gen 1)
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• Dominated by Infrastructure-as-a-Service 
clouds (and storage services)

• Big winner was Amazon EC2

• Hypervisors that virtualized the hardware-
software interface

• Customers were responsible for provisioning 
the software stack from the kernel up
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Hypervisors
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Hypervisors
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• Strong isolation between different customer’s 
virtual machines

• VMM is ‘small’ compared to the kernel… less 
LoC means less bugs means (~)more security.
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• ‘Practical’ attacks on IaaS clouds relied on side 
channels to detect co-location between attacker and 
victim VM

• E.g., we could correlate the performance of a shared 
resource

• network RTT’s, cache performance

• After co-resident, make inferences                            
about victim’s activities

Hypervisors
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• Strong isolation between different customer’s 
virtual machines

• VMM is ‘small’ compared to the kernel… less 
LoC means less bugs means (~)more security.

• High degree of flexibility… but did most 
customers really need it?

Hypervisors
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• PaaS: Platform as a Service

• SaaS: Software as a Service

Cloud Computing (Gen 2)
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• FaaS: Function as a Service

New Gen of Cloud Computing
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• Microservices

New Gen of Cloud Computing
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Enter Containers
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• Rather than virtualize both user space and kernel 
space… why not just ‘virtualize’ user space?

• Meets the needs of most customers, who don’t 
require significant customization of the OS.

• Sometimes called ‘OS virtualization,’ which is 
highly misleading given our existing taxonomy of 
virtualization techniques

• Running natively on host, containers enjoy bare 
metal performance without reliance on advanced 
virtualization support from hardware.
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Enter Containers
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Enter Containers
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Looks like a VM 
from the inside!

Acts like a 
process from the 

outside!
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Containers are processes
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”Container is an old idea”
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• You didn’t heard of it cause it was not called
“containers.”

• Linux containers

• BSD Jails

• Solaris Zones
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Docker’s Big Idea
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• Build, Ship, and Run App, Anywhere

• Debug your app, not your environment --
Securely build and share any application, 
anywhere
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Docker’s Big Idea
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OS Support for Containers
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• Linux Containers (LXC):

• chroot

• namespace

• PID, Network, User, IPC, uts, mount

• cgroups for HW isolation

• Security profiles and policies

• Apparmor, SELinux, Seccomp
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containers = chroot on steroids
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• chroot changes the apparent root directory for a 
given process and all of its children

• An old idea! POSIX call dating back to 1979

• Not intended to defend against privileged attackers… 
they still have root access and can do all sorts of 
things to break out (like chroot’ing again)

• Hiding the true root FS isolates a lot;                           
in *nix, file abstraction used extensively.

• Does not completely hide processes,                  
network, etc., though!
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Chroot

19



CS 423: Operating Systems Design

Namespaces
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• The key feature enabling containerization!

• Partition practically all OS functionalities so that 
different process domains see different things

• Mount (mnt): Controls mount points

• Process ID (pid): Exposes a new set of process IDs 
distinct from other namespaces (i.e., the hosts)

• Network (net): Dedicated network stack per 
container; each interface present in exactly one
namespace at a time.

• ….
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Namespaces
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• The key feature enabling containerization!

• Partition practically all OS functionalities so that 
different process domains see different things

• Interprocess Comm. (IPC): Isolate processes from 
various methods of POSIX IPC.

• e.g., no shared memory between containers!

• UTS: Allows the host to present different host/domain 
names to different containers.

• There’s also a User ID (user) and cgroup namespace
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User Namespace
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• Like others, can provide a unique UID space to the 
container.

• More nuanced though — we can map UID 0 inside the 
container to UID 1000 outside; allows processes 
inside of container to think they’re root.

• Enables containers to perform administration actions, 
e.g., adding more users, while remaining confined to 
their namespace.
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Namespace
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cgroups
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• Limit, track, and isolate utilization of hardware resources including 
CPU, memory,  and disk.

• Important for ensuring QoS between customers! Protects against 
bad neighbors

• Features:

• Resource limitation

• Prioritization

• Accounting (for billing customers!)

• Control, e.g., freezing groups

• The cgroup namespace prevents containers from viewing or 
modifying their own group assignment
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cgroups
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Container Security?
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“Containers do not contain.” - Dan Walsh (SELinux contributor)

• In a nutshell, it’s real hard to prove that every feature of 
the operating system is namespaced.

• /sys? /proc? /dev? LKMs? kernel keyrings?

• Root access to any of these enables pwning the host

• Solution? Just don’t forget about MAC; at this point 
SELinux pretty good support for namespace labeling.

• SELinux and Namespaces actually synergize nicely; much
easier to express a correct isolation policy over a 
coarse-grained namespace than, say, individual processes
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Capabilities



CS 423: Operating Systems Design

Seccomp-bpf
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Linux Security Modules
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DIY container
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Summary

31



CS 423: Operating Systems Design

Takeaways
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• Container support has existing in Linux for many years

• Foundations of containerization has been around for 
decades!

• Automating LXC for portability (i.e., Docker) has 
revolutionized cloud computing

• Lasting legacy of containers may be enabling the 
Function-as-a-Service revolution… cloud customers 
can now pay by the method invocation without any 
idle costs.


