
CS 423: Operating Systems Design

Professor Tianyin Xu

CS 423
Operating System Design:

Memory Wrap-Up



CS 423: Operating Systems Design

It’s an online course now.

2

■ The state is in a shelter-in-place state.

■ Everything is online – so let’s continue.
■ Siebel is closed.
■ DCL is closed.

■ Stay strong and stay safe!
■ Find me if you have any difficulties/problems.
■ You can find me on SysNet slack (I’m a big “slacker”)
■ Stay connected with your friends/family

■ Remote coffee/tea (buy a coffee machine)
■ Video games
■ Remote study group
■ Spend time on MPs J



CS 423: Operating Systems Design

Midterm Grading

3

■ Sorry. We are still working on it.
■ We finished 75%...
■ We needed to physically exchange the papers
in an evening..

■ ETA: End of this week (or beginning of next week)



CS 423: Operating Systems Design

MP1 Grading

4

■ Grading is out (pushed to your VMs).
■ Statistics:

■ Regrading requests are still open.
■ Please go to the TA’s (virtual) office hour
■ Do not rely on emails.

Average 8.506944444

Standard Dev 2.408162551

Minimum 0

Maximum 10



CS 423: Operating Systems Design

Autograder

5

■ The way it works is that you send us the
VM/code and we run an autograder.

■ We can’t tell you what and how autograder is
testing or is implemented.
■ Please don’t bother to interpret, it makes no sense.
■ We will try to remove all the side channels.

■ Autograder cannot find all bugs and has false
positives.
■ That’s why we are taking efforts to manually regrade.

■ Please do follow the rubrics of the PDF.



CS 423: Operating Systems Design

Heads up

6

■ ALL course could be changed to PASS/FAIL.
■ Still under discussion

■ GPA is no longer a thing.
■ Learning is the only purpose for courses.
■ This is how grad school looks like.



CS 423: Operating Systems Design

A Recap of Virtual Memory

7

■ Let’s use Jamboard
■ Virtual and Physical address

■ Illusion: each process has its own memory
■ Translation

■ Page table
■ TLB
■ How translation works (TLB miss, page fault)
■ Huge pages

■ Paging
■ Illusion: each process has infinite amount of memory



CS 423: Operating Systems Design

Page Replacement Strategies

8

■ Reference string: the memory reference 
sequence generated by a program. 

■ Paging – moving pages to (from) disk
■ Optimal – the best (theoretical) strategy
■ Eviction – throwing something out 
■ Pollution – bringing in useless pages/lines



CS 423: Operating Systems Design

Page Replacement Strategies

9

■ The Principle of Optimality
■ Replace the page that will not be used the most time in the future. 

■ Random page replacement
■ Choose a page randomly 

■ FIFO - First in First Out
■ Replace the page that has been in primary memory the longest 

■ LRU - Least Recently Used
■ Replace the page that has not been used for the longest time 

■ LFU - Least Frequently Used
■ Replace the page that is used least often 

■ Second Chance
■ An approximation to LRU. 



CS 423: Operating Systems Design

Principle of Optimality

10

■ Description: 
■ Assume that each page can be labeled with the number of 

instructions that will be executed before that page is first 
referenced, i.e., we would know the future reference string 
for a program. 

■ Then the optimal page algorithm would choose the page 
with the highest label to be removed from the memory. 

■ Impractical because it needs to know future references



CS 423: Operating Systems Design

Optimal Example

11

12 references, 
7 faults



CS 423: Operating Systems Design

FIFO

12

12 references, 
9 faults



CS 423: Operating Systems Design

Average Paging Behavior

13

… that is, until Bélády's anomaly was observed!

As number of page frames increases, we would generally
expect the number of page faults to decrease…



CS 423: Operating Systems Design

Belady's Anomaly (FIFO)

14

As the number of 
page frames 
increase, so does the 
fault rate.

12 references, 
10 faults 

FIFO with 4 
physical pages



CS 423: Operating Systems Design

FIFO w/ Page #’s 3 vs. 4

15



CS 423: Operating Systems Design 16

• Why??? Increasing the number of page 
frames affects the order in which items are 
removed.
• For certain memory access patterns, this can actually 

increase the page fault rate!

• Belay’s Anomaly is reference string dependent; intuition 
about increasing page count still holds in general case.

Belady's Anomaly (FIFO)



CS 423: Operating Systems Design

FIFO w/ Page #’s 3 vs. 4

17



CS 423: Operating Systems Design

FIFO w/ Page #’s 3 vs. 4

18

\nsubseteq



CS 423: Operating Systems Design

LRU

19

12 references, 
10 faults



CS 423: Operating Systems Design

Least Recently Used (LRU) Issues

20

■ How to track “recency”?
■ use time 

■ record time of reference with page table entry
■ use counter as clock
■ search for smallest time. 

■ use stack 
■ remove reference of page from stack (linked list)
■ push it on top of stack 

■ both approaches require large processing 
overhead, more space, and hardware support. 



CS 423: Operating Systems Design

Second Chance

21

■ Only one reference bit in the page table entry. 
■ 0 initially 
■ 1 When a page is referenced

■ Pages are kept in FIFO order using a circular list.
■ Choose “victim” to evict
■ Select head of FIFO
■ If page has reference bit set, reset bit and select next page 

in FIFO list.
■ keep processing until you reach page with zero reference bit 

and page that one out.
■ System V uses a variant of second chance



CS 423: Operating Systems Design

Second Chance Example

22

12 references
9 faults



CS 423: Operating Systems Design

Thrashing

23

■ Computations have locality.
■ As page frames decrease, the page 

frames available are not large enough to 
contain the locality of the process.

■ The processes start faulting heavily.
■ Pages that are read in, are used and 

immediately paged out. 



CS 423: Operating Systems Design

Thrashing & CPU Utilization

24

■ As the page rate goes up, processes get suspended on 
page out queues for the disk.

■ the system may try to optimize performance by starting 
new jobs.

■ starting new jobs will reduce the number of page frames 
available to each process, increasing the page fault 
requests.

■ system throughput plunges. 



CS 423: Operating Systems Design

Working Set

25

■ the working set model assumes 
locality. 

■ the principle of locality 
states that a program 
clusters its access to data 
and text temporally. 

■ As the number of page frames 
increases above some 
threshold, the page fault rate 
will drop dramatically. 



CS 423: Operating Systems Design

Question

26

Why not use very large pages 
to reduce page faults?



CS 423: Operating Systems Design

Paging Terminology

27

■ Reference string: the memory reference 
sequence generated by a program. 

■ Paging – moving pages to (from) disk
■ Optimal – the best (theoretical) strategy
■ Eviction – throwing something out 
■ Pollution – bringing in useless pages/lines



CS 423: Operating Systems Design

Page Size Considerations

28

■ Small pages
■ Reason: 

■ Locality of reference tends to be small (256)
■ Less fragmentation

■ Problem: require large page tables
■ Large pages
■ Reason

■ Small page table
■ I/O transfers have high seek time, so better to transfer more data 

per seek
■ Problem: Internal fragmentation, needless caching


