
CS423: Operating Systems Design

CS 423
Operating System Design:

OS support for
Synchronization

Tianyin Xu (MIC)

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

• Thursday 11:59pm

• Please push your code into your GitHub repo

• This will save you if you want to regrade

• The autograder will run on your VM

• So please make sure your VM is ready

• There are always “human in the loop.”

• Questions: Ask on Piazza.

2

MP1 is due this Thursday

CS423: Operating Systems Design

• Take 1: using memory load/store

• See too much milk solution/Peterson’s algorithm

• Take 2: (corrected from last class!)

3

Implementing Synchronization

Lock::acquire() {
disableInterrupts();

}

Lock::release() {
enableInterrupts();

}

Above solution “works” on single processor…

CS423: Operating Systems Design

Let’s write some simple code

4

Lock::acquire() {
disableInterrupts();
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}
enableInterrupts();

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

} else {
value = FREE;
}
enableInterrupts();

}

Let’s write a smarter implementation of acquire/release
• The key idea is to enable interrupts back ASAP

CS423: Operating Systems Design

Let’s write some simple code

5

Lock::acquire() {
disableInterrupts();
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}
enableInterrupts();

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

} else {
value = FREE;
}
enableInterrupts();

}

Let’s write a smarter implementation of acquire/release
• The key idea is to enable interrupts back ASAP
• Use queues – ready queue and wait queue

CS423: Operating Systems Design

Let’s write some simple code

6

Lock::acquire() {
disableInterrupts();
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}
enableInterrupts();

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

} else {
value = FREE;
}
enableInterrupts();

}

• Let’s use two queues: a read queue and a wait queue
• You can use queue.add()/remove()
• Please use 7.5 minutes to write the acquire and release

CS423: Operating Systems Design

Queueing Lock Implementation (1 Proc)

7

Lock::acquire() {
disableInterrupts();
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}
enableInterrupts();

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

} else {
value = FREE;
}
enableInterrupts();

}

CS423: Operating Systems Design

Question

8

Why won’t this work for multiprocessing?

CS423: Operating Systems Design

Multiprocessor Sync Tool!
• Read-modify-write (RMW) instructions

• Atomically read a value from memory, operate on it, and then write it
back to memory

• Intervening instructions prevented in hardware

• Examples

• Test and set

• Intel: xchgb, lock prefix

• Compare and swap

• Any of these can be used for implementing locks and
condition variables!

9

CS423: Operating Systems Design

Test-and-set
• The test-and-set instruction is an instruction used to write 1

(set) to a memory location and return its old value as a single
atomic (i.e., non-interruptible) operation. If multiple processes may
access the same memory location, and if a process is currently
performing a test-and-set, no other process may begin another test-
and-set until the first process's test-and-set is finished.

• Please implement a lock using test-and-set (5 minutes)

10

lock:acquire() {

}

lock:release() {

}

CS423: Operating Systems Design

Spinlocks
• A spinlock is a lock where the processor waits in a

loop for the lock to become free

• Assumes lock will be held for a short time

• Used to protect the CPU scheduler and to implement locks

11

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

;
}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

}

CS423: Operating Systems Design

Question

12

Neat. So how many spinlocks do we need?

CS423: Operating Systems Design

What thread is currently running?
• Thread scheduler needs to find the TCB of the currently

running thread

• To suspend and switch to a new thread

• To check if the current thread holds a lock before acquiring or
releasing it

• On a uniprocessor, easy: just use a global

• On a multiprocessor, various methods:

• Compiler dedicates a register (e.g., r31 points to TCB running on
the this CPU; each CPU has its own r31)

• If hardware has a special per-processor register, use it

• Fixed-size stacks: put a pointer to the TCB at the bottom of its
stack

• Find it by masking the current stack pointer 14

CS423: Operating Systems Design 15

Queueing Lock Implementation (Multiproc)

Lock::acquire() {
disableInterrupts();
spinLock.acquire();
if (value == BUSY) {

waiting.add(myTCB);
scheduler->

suspend(&spinlock);
} else {

value = BUSY;
}
spinLock.release();
enableInterrupts();

}

Lock::release() {
TCB ∗next;

disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();
scheduler->makeReady(next);

} else {
value = FREE;

}
spinLock.release();
enableInterrupts();

}

Lock implementation —

CS423: Operating Systems Design 16

Queueing Lock Implementation (Multiproc)

Sched::suspend(SpinLock ∗lock) {
TCB ∗next;

disableInterrupts();
schedSpinLock.acquire();
lock−>release();
myTCB−>state = WAITING;
next = readyList.remove();
thread_switch(myTCB, next);
myTCB−>state = RUNNING;
schedSpinLock.release();
enableInterrupts();

}

Sched::makeReady(TCB ∗thread) {

disableInterrupts ();
schedSpinLock.acquire();
readyList.add(thread);
thread−>state = READY;
schedSpinLock.release();
enableInterrupts();

}

Scheduler implementation (7.5 minutes)

CS423: Operating Systems Design 17

Queueing Lock Implementation (Multiproc)

Lock::acquire() {
disableInterrupts();
spinLock.acquire();
if (value == BUSY) {

waiting.add(myTCB);
scheduler->

suspend(&spinlock);
} else {

value = BUSY;
}
spinLock.release();
enableInterrupts();

}

Lock::release() {
TCB ∗next;

disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();
scheduler->makeReady(next);

} else {
value = FREE;

}
spinLock.release();
enableInterrupts();

}

Lock implementation (7.5 minutes)

CS423: Operating Systems Design 18

Queueing Lock Implementation (Multiproc)

Sched::suspend(SpinLock ∗lock) {
TCB ∗next;

disableInterrupts();
schedSpinLock.acquire();
lock−>release();
myTCB−>state = WAITING;
next = readyList.remove();
thread_switch(myTCB, next);
myTCB−>state = RUNNING;
schedSpinLock.release();
enableInterrupts();

}

Sched::makeReady(TCB ∗thread) {

disableInterrupts ();
schedSpinLock.acquire();
readyList.add(thread);
thread−>state = READY;
schedSpinLock.release();
enableInterrupts();

}

Scheduler implementation —

CS423: Operating Systems Design

Locks for user space??
• Kernel-managed threads

• Manage data structures in kernel space

• System calls to communicate w/ scheduler

• User-managed threads

• Implement functionality in thread library

• Can’t disable interrupts, but can temporarily disable
upcalls to avoid preemption in library scheduler,
etc.

19

CS423: Operating Systems Design

Spinning vs Context Switch

• What’s the tradeoff?

20

CS423: Operating Systems Design

Locks in Linux
• Most locks are free most of the time. Linux implementation

takes advantage of this fact!

• Fast path:

• If lock is FREE, and no one is waiting, two instructions to acquire the
lock

• If no one is waiting, two instructions to release the lock

• Slow path

• If lock is BUSY or someone is waiting, use multiproc impl.

• User-level locks also optimized:

• Fast path: count is mapped to proc address space, no sys call needed
when count is 0.

• Slow path: system call to kernel, use kernel lock when waiting
thread 21

CS423: Operating Systems Design

Locks in Linux

22

struct mutex {
/∗ 1: unlocked ;

0: locked;
negative : locked, possible waiters ∗/

atomic_t count;
spinlock_t wait_lock;
struct list_head wait_list;
};

Lock struct contains 3 (not two) states…

lock decl (%eax) // atomic decrement
// %eax is pointer to count

jns 1f // jump if not signed
// (i.e., if value is now 0)

call slowpath_acquire
1: …

Lock acquire code is a macro (to avoid proc call)…

CS423: Operating Systems Design

Synchronization: Semaphores

• Semaphore has a non-negative integer value

• P() atomically waits for value to become > 0, then decrements

• V() atomically increments value (waking up waiter if needed)

• Semaphores are like integers except:

• Only operations are P and V

• Operations are atomic

• If value is 1, two P’s will result in value 0 and one waiter

23

CS423: Operating Systems Design 24

Compare Implementations

Lock::acquire() {
disableInterrupts();
spinLock.acquire();
if (value == BUSY) {

waiting.add(myTCB);
suspend(&spinlock);

} else {
value = BUSY;

}
spinLock.release();
enableInterrupts();

}

Lock::release() {
disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();
scheduler->makeReady(next);

} else {
value = FREE;
}
spinLock.release();
enableInterrupts();

}

Lock implementation —

CS423: Operating Systems Design 25

Compare Implementations

Semaphore::P() {
disableInterrupts();
spinLock.acquire();
if (value == 0) {

waiting.add(myTCB);
suspend(&spinlock);

} else {
value--;

}
spinLock.release();
enableInterrupts();

}

Semaphore::V() {
disableInterrupts();
spinLock.acquire();
if (!waiting.Empty()) {

next = waiting.remove();
scheduler->makeReady(next);

} else {
value++;
}
spinLock.release();
enableInterrupts();

}

Semaphore implementation —

CS423: Operating Systems Design

Semaphores Harmful?
• Semaphores conflate the roles of locks and condition

variables (mutual exclusion, shared data).

• Simpler code verification w/o: prove every lock is eventually unlocked.

• Semaphores have state!

• What does value=3 mean? Programmer must carefully map object
state to semaphore value.

• CVs, in contrast, allows us to wait on arbitrary state/predicate, and are
thus a better abstraction.

• However, semaphores have good uses, including…

• Unlocked waits, e.g., interrupt handler that synchronizes
communication between I/O device and waiting threads.

26

CS423: Operating Systems Design

Semaphore Bounded Queue

27

get() {
fullSlots.P();
mutex.P();
item = buf[front % MAX];
front++;
mutex.V();
emptySlots.V();
return item;

}

put(item) {
emptySlots.P();
mutex.P();
buf[last % MAX] = item;
last++;
mutex.V();
fullSlots.V();

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

CS423: Operating Systems Design 28

Implementing CVs w/ Semaphores

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

semaphore.V();
}

How can we implement Condition Variables using semaphores?

Take 1:

Problems?

CS423: Operating Systems Design 29

Implementing CVs w/ Semaphores

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

if (semaphore is not empty)
semaphore.V();

}

How can we implement Condition Variables using semaphores?

Take 2:

Problems?

CS423: Operating Systems Design 30

Implementing CVs w/ Semaphores

wait(lock) {
semaphore = new Semaphore;
queue.Append(semaphore); // queue of waiting threads
lock.release();
semaphore.P();
lock.acquire();

}
signal() {

if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

}
}

How can we implement Condition Variables using semaphores?

Take 3:

Problems?

CS423: Operating Systems Design 31

Implementing CVs w/ Semaphores

//Put thread on queue of waiting threads….
void CV::wait(Lock *lock){

semaphore = new Semaphore(0);
waitQueue.Append(semaphore)
lock.release();
semaphore.P();
lock.acquire();

}

Implementation used for Microsoft Windows before
native support was offered:
Take 4:

//Wake up one waiter if any.
void CV::signal() {
if(!waitQueue.isEmpty()) {

semaphore = queue.Remove();
semaphore.V();

}
}

