CS 423
Operating System Design:
OS support for
Synchronization
Tianyin Xu (MIC)

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

MP 1 1s due this [hursday

* Thursday | 1:59pm
* Please push your code into your GitHub repo
* This will save you if you want to regrade
 The autograder will run on your VM
 So please make sure your VM is ready
 There are always “human in the loop.”

* Questions: Ask on Piazza.

CS423: Operating Systems Design

Implementing Synchronization [|

« Take |: using memory load/store
« See too much milk solution/Peterson’s algorithm

« Take 2: (corrected from last class!)

Lock::acquire() { Lock: :release() {
disableInterrupts(); enableInterrupts();

} }

Above solution “works” on single processor...

CS423: Operating Systems Design 3

Let's write some simple code

Let’s write a smarter implementation of acquire/release
« The key idea is to enable interrupts back ASAP

Lock::acquire() { Lock::release() {
disableInterrupts(); disableInterrupts();

enableInterrupts();

enableInterrupts();

}

CS5423: Operating Systems Design 4

Let's write some simple code

Let’s write a smarter implementation of acquire/release
« The key idea is to enable interrupts back ASAP
 Use gueues —ready queue and wait queue

Lock::acquire() { Lock::release() {
disableInterrupts(); disableInterrupts();

enableInterrupts();

enableInterrupts();

}

CS423: Operating Systems Design 5

Let's write some simple code

 |et's use two queues: a read queue and a walit queue
* You can use queue.add()/remove()
 Please use 7.5 minutes to write the acquire and release

Lock::acquire() { Lock::release() {
disableInterrupts(); disableInterrupts();

enableInterrupts();

enableInterrupts();

}

CS423: Operating Systems Design 0

Queueing Lock Implementation (| Proc)

Lock::acquire() {

disableInterrupts();

if (value == BUSY)

{

waiting.add(myTCB) ;

myTCB->state =

next = readyList.remove();

WAITING;

switch(myTCB, next);

myTCB->state =
} else {
value = BUSY;

}

enableInterrupts();

RUNNING;

I

Lock::release() {

disableInterrupts();

if (!waiting.Empty()) {
next = wailiting.remove();
next->state = READY;

readyList.add(next);
} else {

value = FREE;
}

enableInterrupts();

CS423: Operating Systems Design /

Question

Why won't this work for muitiprocessing?

CS423: Operating Systems Design

Multiprocessor Sync Tooll | [

« Read-modify-write (RMW) instructions

« Atomically read a value from memory, operate on it, and then write it
back to memory

 Intervening instructions prevented in hardware

« Examples
« Test and set
* Intel: xchgb, lock prefix
« Compare and swap

« Any of these can be used for implementing locks and
condition variables!

CS423: Operating Systems Design

| est-and-set

« The test-and-set instruction is an instruction used to write |
(set) to a memory location and return its old value as a single
atomic (i.e., non-interruptible) operation. If multiple processes may
access the same memory location, and if a process is currently
performing a test-and-set, no other process may begin another test-
and-set until the first process's test-and-set is finished.

* Please implement a lock using test-and-set (5 minutes)

lock:acquire() {

lock:release() {

}

CS423: Operating Systems Design

Spinlocks

« A spinlock is a lock where the processor waits in a
loop for the lock to become free

« Assumes lock will be held for a short time

« Used to protect the CPU scheduler and to implement locks

Spinlock::acquire() {
while (testAndSet(&lockValue) == BUSY)

}

Spinlock::release() {
lockValue = FREE;
memorybarrier();

CS423: Operating Systems Design

Question

Neat. S0 how many spinlocks tdo we need?

CS423: Operating Systems Design

What thread is currently running?][

» Thread scheduler needs to find the TCB of the currently
running thread

« To suspend and switch to a new thread

« To check if the current thread holds a lock before acquiring or
releasing it

« On a uniprocessor, easy: just use a global

« On a multiprocessor, various methods:

« Compiler dedicates a register (e.g., r31 points to TCB running on
the this CPU; each CPU has its own r31)

 If hardware has a special per-processor register, use it

 Fixed-size stacks: put a pointer to the TCB at the bottom of its
stack

C5423: Operating Sy siems Design

Queueing Lock Implementation (Multiproc)][

Lock implementation —

Lock: :acquire() { Lock::release() {
disableInterrupts(); TCB *next;
spinLock.acquire();
1f (value == BUSY) { disableInterrupts();

waliting.add(myTCB) ; spinLock.acquire();
scheduler-> 1f (!waiting.Empty()) {

next = wailiting.remove();

suspend (&spinlock);
scheduler->makeReady (next);

} else {

value = BUSY; } else {
} value = FREE;
spinLock.release(); }
enableInterrupts(); spinLock.release();

enableInterrupts();

CS423: Operating Systems Design

Queueing Lock Implementation (Multiproc)][

Scheduler implementation (7.5 minutes)

Sched: :suspend(SpinLock =xlock) { Sched: :makeReady (TCB *thread) {

CS423: Operating Systems Design

Queueing Lock Implementation (Multiproc)][

Lock implementation (7.5 minutes)

Lock: :acquire() { Lock::release() {
disableInterrupts(); TCB *next;
spinLock.acquire();
1f (value == BUSY) { disableInterrupts();

waliting.add(myTCB) ; spinLock.acquire();
scheduler-> if (!waiting.Empty()) {
suspend (&spinlock) ; next = waiting.remove();
} else { scheduler->makeReady (next);
value = BUSY; } else {
} value = FREE;
spinLock.release(); }
enableInterrupts(); spinLock.release();

enableInterrupts();

CS423: Operating Systems Design

Queueing Lock Implementation (Multiproc)

Scheduler implementation —

Sched: :suspend(SpinLock =*lock) { Sched::makeReady(TCB *thread) {
TCB =*next;

disableInterrupts(); disableInterrupts ();
schedSpinLock.acquire(); schedSpinLock.acquire();
lock—>release(); readyList.add(thread);
myTCB—>state = WAITING; thread->state = READY;
next = readyList.remove(); schedSpinLock.release();
thread switch(myTCB, next); enableInterrupts();
myTCB—>state = RUNNING; }

schedSpinLock.release();
enableInterrupts();

CS423: Operating Systems Design

Locks for user space!!

« Kernel-managed threads
« Manage data structures in kernel space

« System calls to communicate w/ scheduler

» User-managed threads
* Implement functionality in thread library

« Can’t disable interrupts, but can temporarily disable
upcalls to avoid preemption in library scheduler,

etc.

CS423: Operating Systems Design

Spinning vs Context Switch 1

« What’s the tradeoff?

CS423: Operating Systems Design

| ocks In Linux

* Most locks are free most of the time. Linux implementation
takes advantage of this fact!

Fast path:

 If lock is FREE, and no one is waiting, two instructions to acquire the
lock

 If no one is waiting, two instructions to release the lock

Slow path

« If lock is BUSY or someone is waiting, use multiproc impl.

User-level locks also optimized:

 Fast path: count is mapped to proc address space, no sys call needed
when count is 0.

CS423: Operating Systems Design

| ocks In Linux

Lock struct contains 3 (not two) states...

struct mutex {
/* 1l: unlocked ;
0: locked;
negative : locked, possible waiters =*/
atomic t count;
spinlock t wait lock;
struct list head wait 1list;

i
Lock acquire code is a macro (to avoid proc call)...

lock decl (%eax) // atomic decrement
// %eax 1s pointer to count
jns 1f // jump if not signed

// (i.e., if value is now 0)
call slowpath acquire
l: ..

CS423: Operating Systems Design

Synchronization: Semaphores

« Semaphore has a non-negative integer value

« P() atomically waits for value to become > 0, then decrements

* V() atomically increments value (waking up waiter if needed)

« Semaphores are like integers except:

« Only operations are P and V
« Operations are atomic

e If valueis I, two P’s will result in value 0 and one waiter

CS423: Operating Systems Design

Compare Implementations

Lock implementation —

Lock::acquire() { Lock::release() {
disableInterrupts(); disableInterrupts();
spinLock.acquire(); spinLock.acquire();
if (value == BUSY) { if (!waiting.Empty()) {

waiting.add(myTCB) ; next = waiting.remove();
suspend(&spinlock); scheduler->makeReady (next);
} else { } else {
value = BUSY; value = FREE;
} }
spinLock.release(); spinLock.release();
enableInterrupts(); enableInterrupts();

CS423: Operating Systems Design

Compare Implementations

Semaphore implementation —

Semaphore::P() { Semaphore::V() {
disableInterrupts(); disableInterrupts();
spinLock.acquire(); spinLock.acquire();
1f (value == 0) { if (!waiting.Empty()) {

waiting.add(myTCB) ; next = waiting.remove();
suspend(&spinlock); scheduler->makeReady (next) ;
} else { } else {
value--; value++;
} }
spinLock.release(); spinLock.release();
enableInterrupts(); enableInterrupts();
} }

CS423: Operating Systems Design

Semaphores Harmful?

« Semaphores conflate the roles of locks and condition
variables (mutual exclusion, shared data).

« Simpler code verification w/o: prove every lock is eventually unlocked.

« Semaphores have state!

* What does value=3 mean! Programmer must carefully map object
state to semaphore value.

« CVs, in contrast, allows us to wait on arbitrary state/predicate, and are
thus a better abstraction.

« However, semaphores have good uses, including...

* Unlocked waits, e.g., interrupt handler that synchronizes
communication between I/O device and waiting threads.

CS423: Operating Systems Design

Semaphore Bounded Queue

get() { put(item) {
fullSlots.P(); emptySlots.P();
mutex.P(); mutex.P();
item = buf[front % MAX]; buf[last % MAX] = item;
front++; last++;
mutex.V(); mutex.V();
emptySlots.V(); fullSlots.V();
return item; }

}

Initially: front = last = 0; MAX is buffer capacity
mutex = 1; emptySlots = MAX; fullSlots = 0;

CS423: Operating Systems Design

I

Implementing CVs w/ Semaphores][

How can we implement Condition Variables using semaphore

Take 1:

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}

signal() {
semaphore.V();

}

Problems?

CS423: Operating Systems Design

Implementing CVs w/ Semaphores][

How can we implement Condition Variables using semaphore

Take 2:

wait(lock) {
lock.release();
semaphore.P();
lock.acquire();

}

signal() {
1f (semaphore i1s not empty)

semaphore.V();

Problems?

CS423: Operating Systems Design

Implementing CVs w/ Semaphores][

How can we implement Condition Variables using semaphore

Take 3:
wait(lock) {
semaphore = new Semaphore;
queue.Append (semaphore); // queue of waiting threads

lock.release();
semaphore.P();
lock.acquire();

}
signal() {
if (!queue.Empty()) {
semaphore = queue.Remove();
semaphore.V(); // wake up waiter

} Problems?

CS423: Operating Systems Design

Implementing CVs w/ Semaphores][

Implementation used for Microsoft Windows before
native support was offered:

Take 4:

//Put thread on queue of waiting threads...

volid CV::wait(Lock *lock){
semaphore = new Semaphore(0);
waitQueue.Append(semaphore)
lock.release();
semaphore.P();

//Wake up one waiter if any.
volid CV::signal() {

. 1f(!waitQueue.isEmpty()) {
lock.acquire(); semaphore = gqueue.Remove();
} semaphore.V();
}
}

CS423: Operating Systems Design

