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MP2: Rate-Monotonic CPU Scheduling

1 Goals and Overview

• In this MP you will learn the basics of Real-Time CPU Scheduling

• You will develop a Rate Monotonic Scheduler for Linux using Linux Kernel Modules

• You will implement bound-based Admission control for the Rate Monotonic Sched-
uler

• You will learn the basic kernel API of the Linux CPU Scheduler

• You will use the slab allocator to improve performance of object memory allocation
in the kernel

• You will implement a simple application to test your Real-Time Scheduler.

2 Introduction

Several systems that we use every day have requirements in terms of response time
(e.g. delay and jitter) and predictability for the safety or enjoyment of their users.
For example a surveillance system needs to record video of a restricted area, the video
camera must capture a video frame every 30 milliseconds. If the capture is not properly
scheduled, the video quality will be severely degraded.

For this reason, the Real-Time systems area has developed several algorithms and
models to provide this precise timing guarantees as close to mathematical certainty as
needed. One of the most common models used is the Periodic Task Model.

A Periodic Task as defined by the Liu and Layland model [10] is a task in which a
job is released after every period P, and must be completed before the beginning of the
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Figure 1: Liu and Layland Periodic Task Model

next period, referred to as deadline D. As part of the model, each job requires certain
processing time C. Figure ?? illustrates this model.

In this MP we will develop a CPU scheduler for the Liu and Layland Periodic
Task Model. The scheduler will be based on the Rate-Monotonic Scheduler (RMS).
The RMS is a static priority scheduler, in which the priorities are assigned based on
the period of the job: the shorter the period, the higher the priority. This scheduler is
preemptive, which means that a task1 with a higher priority will always preempt a task

with a lower priority until its processing time has been used.

3 Developmental Setup

In this assignment, you will again work on the provided Virtual Machine and you will
develop kernel modules for the Linux Kernel 4.4.0-NetId that you installed on your
machine as part of MP0. Again, you will have full access and control of your Virtual
Machine, you will be able to turn it on, and off using the VMWare vSphere Console.
Inside your Virtual Machine you are free to install any editor or software like Gedit,
Emacs and Vim.

During the completion of this and other MPs, errors in your kernel modules could
potentially lead to “bricking” your VM, rendering it unusable. If this happens, please
post to Piazza asking for help and a TA will work with Engr-IT to have your VM
restored. However, this will cost you precious hours of development time! It is rec-
ommended that you backup your work often by using version control and snapshotting
your Virtual Machine.

Finally, you are encouraged to discuss design ideas and bugs in Piazza. Piazza is a
great tool for collective learning. However, please refrain from posting large amounts

of code. Two or three lines of code are fine. High-level pseudo-code is also fine.

1Please note that in this documentation we will use the term application and task interchangeably.
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4 Problem Description

In this MP we will implement a Real-Time CPU scheduler based on the Rate-Monotonic
Scheduler (RMS) for a Single-Core Processor. We will implement our scheduler as a
Linux Kernel module and we will use the Proc filesystem to communicate between
the scheduler and the user space applications. We will use a single Proc filesystem

entry for all the communication (/proc/mp2/status), readable and writable by
any user. Our scheduler should implement three operations available through the Proc
filesystem:

• Registration: This allows the application to notify to Kernel module its intent
to use the RMS scheduler. The application also communicates its registration
parameters to the kernel module ( PID, Period, Processing Time).

• Yield: This operation notifies the RMS scheduler that the application has finished
its period. After a yield, the application will block until the next period.

• De-Registration: This allows the application to notify the RMS scheduler that
the application has finished using the RMS scheduler.

Our Rate-Monotonic scheduler will only register a new periodic application if the
application’s scheduling parameters pass through the admission control. The admission
control must decide if the new application can be scheduled along with other already
admitted periodic application without missing any deadlines for any of the registered
tasks in the system. The admission control should be implemented as a function in your
kernel module. Your scheduler does not need to handle cases where the application will

use more than the reserved Processing Time (Overrun Cases).
This scheduler will rely on the Linux Scheduler to perform context switches and

therefore you should use the Linux Scheduler API. You do not need to handle any
low-level functions. Please read Sections ?? and ?? for more information.

Additionally an application running in the system should be able to query which
applications are registered and also query the scheduling parameters of each registered
application. When the entry (/proc/mp2/status) is read by an application, the
kernel module must return a list with the PID, Period and Processing Time of each
application.

We will also develop a simple test application for our scheduler. This application
will be a single threaded periodic application with individual jobs calculating factorials.
This periodic application must register itself with the scheduler (through admission
control). During the registration process it must specify its scheduling parameters:
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The Period of the jobs expressed in milliseconds and Processing Time of each job also
expressed in milliseconds.

After the registration the application must read the Proc filesystem entry to ensure
that its PID is listed. This means the task is accepted. After this, the application must
signal the scheduler that it is ready to start by sending a YIELD message through the
Proc filesystem. Then the application must initiate the Real-Time Loop, and begin
the execution of the periodic jobs. One job is equivalent to one iteration of the Real-
Time Loop. At the end of the Real-Time Loop, the application must de-register after
finishing all its periodic jobs. The de-registration of the application from the scheduler
is done using the Proc filesystem. Below you can find the pseudo code of the Periodic
Application:

void main(void)

{

REGISTER(PID, Period, JobProcessTime); //Proc filesystem

list=READ STATUS(); //ProcFS: Verify the process was admitted

if (!process in the list) exit 1;

//setup everything needed for RT loop: t0=gettimeofday()

YIELD(PID); //Proc filesystem

//this is the real-time loop

while(exist jobs)

{

do_job(); //wakeup_time=gettimeofday()-t0 and factorial computation

YIELD(PID); //ProcFS. JobProcessTime=gettimeofday()-wakeup_time

}

UNREGISTER(PID); //ProcFS

}

To determine the processing time of a job you can run the application using the
Linux scheduler first and measuring the average execution time of one iteration of the
Real-Time Loop.

During the real-time loop our test application must print the wake-up time of the
process and the time spent during the computation of each job. You can use the
gettimeofday() function. This value will be useful to test your scheduler.

Additionally your application can perform a simple computation, we recommend
calculating the factorial of a fixed number. This MP is about Real-Time scheduling, so
keep the application simple.
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5 Implementation Challenges

Scheduling usually involves 3 challenges that must work all together or you might find
yourself with zombie processes or processes that do not obey the RMS policy:

1) The first challenge involves waking your application when it is ready to run. Rate
Monotonic has a very strict release policy and does not allow the job of any appli-
cation to run before its period. This means that our application must sleep until the

beginning of the period without any busy waiting or we will waste valuable resources
that can be used to schedule other applications. This challenge clearly states that our
applications will have various states in the kernel:

– READY state in which an application has reached the beginning of the period
and a new job is ready to be scheduled.

– RUNNING state in which an application is currently executing a job. This
application is currently using the CPU.

– SLEEPING state in which an application has finished executing the job for the
current period and it is waiting for the next period.

2) The second challenge involves preempting an application that has higher priority

than the current application as soon as this application becomes available to run.
This involves triggering a context switch. We will use the Linux Scheduler API for
this.

3) The third challenge is to preempt an application that has finished its current job. To
achieve this we will assume that the application always behaves correctly and noti-
fies the scheduler that it has finished its job for the current period. Upon receiving a
YIELD message from the Proc filesystem, the RMS scheduler must put the applica-
tion to sleep until the next period. This involves setting up a timer and preempting
the CPU to the next READY application with the highest priority.

From these three challenges we know that we will need to augment the Process
Control Block of each task: We will need to include the application state (READY,
SLEEPING, RUNNING), a wake up timer for each task and the scheduling parameters
of the task, including the period of the application (which denotes the priority in RMS).
Also, the scheduler will need to keep a list or a run queue of all the registered tasks so
we can pick the correct task to schedule during any preemption point. An additional

challenge is performance – CPU scheduler must minimize its overhead. Floating Point
arithmetic is very expensive and therefore it must be avoided.
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Figure 2: MP2 Architecture Overview

6 Implementation Overview

In this section we will guide you through the implementation process. Figure ?? shows
the basic architecture of our scheduler.

1. The best way to start is by implementing an empty (’Hello World!’) Linux Kernel
Module. You should also be able to reuse some of the most generic functions you
implemented on MP1, like linked list helper functions and so.

2. After this you should implement the Proc Filesystem entry. The write callback
function should have a switch to separate each type of message (REGISTRATION,
YIELD, DE-REGISTRATION). At this step 2 of implementation you may leave the
functions empty or simply print a message using printk(), but you will implement
them then in full functionality during the steps 7 and 8.

We recommend adding an operation character at the beginning and performing the
switch operation over that character. This allows you to receive various types of
messages with a single Proc filesystem entry and provide a single unified interface.
As an example we show the string formats for each the Proc Filesystem messages:
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– For REGISTRATION: “R, PID, PERIOD, COMPUTATION”

– For YIELD: “Y, PID”

– For DE-REGISTRATION: “D, PID”

You should be able to test your code at this point.

3. You should augment the Process Control Block (PCB). We are not going to directly
modify the Linux PCB (struct task_struct) but instead declare a separate data struc-
ture that points to the corresponding PCB of each task.

Create a new struct and add a pointer of type struct task_struct. In Linux this is the
data structure that represents the PCB and it is defined in linux/sched.h. Also we
recommend you index your list by PID. To obtain the task_struct associated with a
given PID we have provided you with a helper function in mp2_given.h

Add any other information you need to keep the current state of the task, including
the period, the processing time, a wake up timer for the task, etc. Your data structure
should look something like this:

struct mp2_task_struct {

struct task_struct* linux_task;

struct timer_list wakeup_timer;

...

}

4. Now you should be able to implement registration. Do not worry about admission
control at this point, we will implement admission control in Step 8. Allow any task
for now. To implement registration go back to the empty registration function from
Step 2.

In this function you must allocate and initialize a new mp2_task_struct. We will
use the slab allocator for memory allocation of the mp2_task_struct. The slab al-
locator is an allocation caching layer that improves allocation performance and re-
duces memory fragmentation in scenarios that require intensive allocation and deal-
location of objects of the same size (e.g creation of a new PCB after a fork()).
As part of your kernel module initialization you must create a new cache of size
sizeof(mp2_task_struct). This new cache will be used by the registration function to
allocate a new instance of mp2_task_struct.

The registration function must initialize mp2_task_struct. We will initialize the task
in SLEEPING state. However, we will let the task run until the application reaches
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the YIELD message as indicated by the Real-Time Loop. Until we reach the Real-
Time loop we do not enforce any scheduling. You will need then to insert this new
structure into the list of tasks. This step is very similar to what you did in MP1.

As part of this step you should also implement the Read callback of the Proc Filesys-
tem entry.

5. You should implement de-registration. The de-registration requires you to remove
the task from the list and free all data structures allocated during registration. Again
this is very similar to what you did in MP1. You should be able to test your code by
trying to registering and de-registering some tasks.

6. In Tasks 6 and 7 we will implement the wake up and preemption mechanisms. Before
we implement anything, let’s analyze how our scheduling will work:

We will have a kernel thread (dispatching thread) that is responsible for triggering
the context switches as needed. The dispatching thread will sleep the rest of the time.
There will be two cases in which a context switch will occur: 1) After receiving a
YIELD message from the application, and 2) After the wakeup timer of the task
expires. When the Proc filesystem callback receives a YIELD message, it should
put the associated application to sleep and setup the wakeup timer. Also it should
change the task state to SLEEPING. When the wakeup timer expires, the timer inter-
rupt handler should change the state of the task to READY and should wake up the
dispatching thread. The timer interrupt handler must not wake up the application!

In Step 6 we will implement the dispatching thread and the kernel mechanism. In
Step 7 we will implement the YIELD handler function.

6a. Let’s start by implementing the dispatching thread. As soon as the context
switch wakes up, you will need to find in the list, the task with READY state
that has the highest priority (that is the shortest period). Then you need to pre-
empt the currently running task (if any) and context switch to the chosen task.
If there are no tasks in READY state we should simply preempt the currently
running task. The task state of the old task must be set to READY only if the
state is RUNNING. This is because we will previously set the state of the old
task to SLEEPING in the YIELD handler function. Also you must set the state
of the new running task to RUNNING.

To handle the context switches and the preemption we will use the scheduler
API based on some known behavior of the Linux scheduler. We know that
any task running on the SCHED_FIFO will hold the CPU for as long as the
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application needs. So we can trigger a context switch by using the function
sched_setscheduler().

You can use the functions set_current_state() and schedule() to get the dispatch-
ing thread to sleep. For the new running task the dispatching thread should
execute the following code:

struct sched_param sparam;

wake_up_process(task);

sparam.sched_priority=99;

sched_setscheduler(task, SCHED_FIFO, &sparam);

At this point is where we wake up the task and not in the wake up timer handler.
Similarly, for the old running task (preempted task), the dispatching thread
should execute the following code:

struct sched_param sparam;

sparam.sched_priority=0;

sched_setscheduler(task, SCHED_NORMAL, &sparam);

We recommend you keep a global variable with the current running task (struct
mp2_task_struct*). This will simplify your implementation. This practice is
common and it is even used by the Linux kernel. If there is no running task you
can set it to NULL.

6b. Now we should implement the wake up timer handler. As mentioned before
the handler, should change the state of the task to READY and should wake up
the dispatching thread. You can think of this mechanism as a two-halves where
the top half is the wake-up timer handler and the bottom half is the dispatching
thread.

7. In this step we will implement the YIELD handler function from the Proc filesystem
callback that we left blank from Step 2. In this function we need to change the state
of the calling task to SLEEPING. We need to calculate the next release time (that is
the beginning of the next period), we must set the timer and we must put the task to
sleep as TASK_UNINTERRUPTIBLE. You can use the macro set_task_state(struct
task_struct*,TASK_UNINTERRUPTIBLE) to change the state of other task.

Please note that you must only set the timer and put the task to sleep if the next period
has not started yet. If you set a timer with a negative value the two’s complement
notation of signed numbers will result in a too large unsigned number and the task
will freeze.
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8. You should now implement the admission control. The admission control should
check if the current task set and the task to be admitted can be scheduled without
missing any deadline according to the utilization bound-based method. If the task
cannot the accepted, then the scheduler must simply not allow the task in the system.

The utilization bound-based admission method establishes that a task set is schedu-
lable if the following equation is true:∑

i∈T
Ci

Pi
≤ 0.693

where T is the set of all tasks in the system including the task to be admitted, Ci is
the Processing Time used per period Pi for the i-th task in the system.

To implement admission control or any time computation do not use Floating-
Point. Floating-Point support is very expensive in the kernel and should be avoided
at all cost. Instead use Fixed-Point arithmetic implemented through integers.

9. You should go back and make sure that you are properly destroying and de- allocating
all the memory. This is especially true for the module exit function. For this MP
you do not have to worry about tasks that do not perform de-registration before the
module is terminated. We will assume all the tasks behave well.

10. Now implement the test application and make sure that your scheduler is behaving
as expected. It is recommended that you test with multiple instances of the test appli-
cation and different periods and computation loads. For testing and demo purposes
your test application should print the start time and finish time of every job and run
the application with various periods and number of jobs. We also recommend that
you design your test application such that the period and number of jobs of the ap-
plication can be specified as a command line parameter.

7 Software Engineering

Your code should include comments where appropriate. It is not a good idea to repeat
what the function does using pseudo-code, but instead, provide a high-level overview of
the function including any preconditions and post-conditions of the algorithm. Some
functions might have as few as one line comments, while some others might have a
longer paragraph.
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Also, your code must be split into small functions, even if these functions contain
no parameters. This is a common situation in kernel modules because most of the vari-
ables are declared as global, including but not limited to data structures, state variables,
locks, timers and threads.

An important problem in kernel code readability is to know if a function holds
the lock for a data structure or not, different conventions are usually used. A common
convention is to start the function with the character ’_’ if the function does not hold
the lock of a data structure.

In kernel coding, performance is a very important issue. Usually the code uses
macros and preprocessor commands extensively. Proper use of macros and proper
identification of possible situations where they should be used are important issues in
kernel programming.

Another important aspect is that Floating Point Units are very slow and not always
available. Therefore the use of Floating Point arithmetic must be avoided whenever
possible. Most general purpose code can be implemented using Fixed Point arithmetic.

Finally, in kernel programming, the use of the goto statement is a common prac-
tice. A good example of this, is the implementation of the Linux scheduler function
schedule(). In this case, the use of the goto statement improves readability and/or
performance. ?Spaghetti code? is never a good practice.

8 Grading Criteria

Criterion

Are read/write ProcFS callbacks correctly implemented? (parse scheduler msg’s, print status)*

Is your Process Control Block correctly implemented/modified?

Is your registration function correctly implemented (Admission Control, using slab allocator)?

Is your deregistration function correctly implemented?

Is your Wake-Up Timer correctly implemented?

Is your YIELD function correctly implemented?

Is your Dispatching Thread correctly implemented?

Are your Data Structures correctly Initialized/De-Allocated?

Does your test application following the Application Model work?

Document Describing the implementation details and design decisions

Your code compiles and runs correctly and does not use any Floating Point arithmetic.

Your code is well commented, readable and follows software engineering principles.
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