
MP3: Virtual Memory Page Fault Profiler

Peizhe Liu

CS 423: Operating System Design

Fall 2025

Important Dates

• MP3 is released today.

• The due date is 11/20.

• MP3 will likely cost you several days.

• NO LATE SUBMISSION. We found that GitHub allows it, but we won’t.

Important Reminders

• You must complete this MP

individually.

• Copy & Paste from whatever AI is

a severe academic integrity

violation. (Student Code 1-402)

Goals

• Understand Linux paging management.

• Develop a kernel PF profiler tool.

• Work with your profile tool to analyze PF and its effect on CPU usage.

• Utilize more kernel APIs, like char device, vmalloc, paging.

What You Need

• Your MP0 environment.

• VSCode+clangd setup (strongly recommended).

• Instructions on the course website.

• https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md

• Accept your assignment on GitHub classroom and start right away.

• https://classroom.github.com/a/V5g52O1A

https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md
https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md
https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md
https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md
https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md
https://github.com/cs423-uiuc/cs423-uiuc.github.io/blob/master/fall25/mps/MP3.md
https://classroom.github.com/a/V5g52O1A
https://classroom.github.com/a/V5g52O1A

Major and Minor PF

• What is a Page Fault?

• What is a Minor Page Fault?

• What is a Major Page Fault?

• How do various PFs affect CPU usage?

MP3 Profiler

• Can profile multiple programs.

• Provides: jiffies, minor PF count, major PF count, and CPU usage data.

• Read out the data using a monitor.

• Analyze the PF and how it affects CPU usage.

MP3 Profiler

• Can profile multiple work programs (provided).

• Captures: jiffies, minor PF count, major PF count, and CPU usage data.

• Save the statistics using a monitor program (provided).

Register, De-Register, and Process List

• Register: worker registers itself with its PID via proc write.

• De-register: worker has finished and de-registers itself via proc write.

• MP1-style process list via proc read.

Profiling PF

• Use a delayed workqueue

• Profile at 20 Hz (we provide a function):

• However, these statistics are only available in kernel (read via procfs?).

• We want to avoid overheads crossing the kernel boundary.

Buffer Sharing

• We can create and populate a buffer in kernel.

• Map the buffer back to user.

• So, the buffer is shared between kernel and user.

Creating the Buffer

• Must be at least 512KB (we force you to use).

• Must not be swapped to hard disk (reserved bit).

• Kernel populates it, while monitor program reads it.

Populating the Buffer

• We make the buffer a queue.

• Must contains 12000 samples.

• For each sample:

Mapping the Buffer

• Implement

• procfs, which everyone is very familiar with, does not support it!

• Implement a character device.

• Remap buffer pages to user page table.

• Does kernel still have access?

• Be careful that pages are not continuous!

Case Study

• We provide the monitor and work program.

• You will be required to do some case studies.

• CPU Utilization:

Pro Tips

• Good tools can be very helpful.

• Try conventional commits.

• Source code is your best teacher.

• Start right away!

Total: ~400 lines

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

