[ILLINOIS

AAAAAA -CHAMPAIGN

MP2: Rate-Monotonic CPU Scheduling

Peizhe Liu

CS 423: Operating System Design
Fall 2025

Important Dates

MP2 is released today.
The due date is 10/28.
MP2 will likely cost you several days (probably more than MP1).

NO LATE SUBMISSION. We found that GitHub allows it, but we won’t.

Goals

Learn the basics of real-time CPU scheduling.
Develop a Rate-Monotonic Scheduler for Linux.
Utilize more kernel APIs, like scheduler, slab allocator, kthread.

Test your scheduler with a user app.

What you need

Your MP0O environment.

VSCode+clangd setup (strongly recommended).

Instructions on the course website.

Accept your assignment on GitHub classroom and start right away.

Periodic Tasks Model

Real time systems often require response time and predictability.

* Surveillance camera that captures a frame per 30ms

Liu and Layland Periodic Task Model to provide that timing guarantee.

Every tasks carries a processing time and period.

Every period, the task must run once, and must finish before the next period

Deadline Processing

starts. \ Time

Task

Time

Rate-Monotonic Scheduler

An algorithm to implement the Periodic Tasks Model (methods VS rules).
Static priority: the shorter the period, the higher the priority.

Preemptive: higher priority task will preempt lower priority task.

C;
Utilization bound: > — <0.693
el ~ 1

* T: all tasks in the system, including the incoming one

* C: processing time.

* P: period.

MP2 Overview

- Kernel module: implements RMS.
* Communicates with your user application via proc file write.
* Prints list of applications via proc file read.
* Handles the real scheduling via Linux scheduler APIs.
- User application: simulates a RT application for your RMS.

* Registers itself to your kernel module.

* May run multiple instances.

RMS States

Ready: application is currently in its new period. Ready to be scheduled.
Running: application is currently running.

Sleeping: application has finished running in its current period.

Deadline Processing

\ Time
—

Task

Time

Period

State Transitions

Application is in its new period. Application is being scheduled.

Sleeping Ready
Application with higher
/

priority is being
scheduled.

Current task finished.

Implement RMS

- New period: kernel timer
- Being scheduled/preempt: dispatcher kthread

- Task finished: userapp yield via proc file write

Application is in its new period. Application is being scheduled.

Ready
Application with higher
/

priority is being
scheduled.

Current task finished.

Application is in its new period. Application is being scheduled.

Kernel Timer
Ready
Application with higher
=

priority is being

- Every application got its own timer. scheduled.

. . . Current task finished.
* Set to its period time.

« When timer fired:

* State transits from SLEEPING to READY.
* Wake up the dispatcher kthread.

* Technically, it cannot fire at READY or RUNNING state...

Dis patcher KThread Application is in its new period. Application is being scheduled.

- Wake up by timer or yield.
Ready
Application with higher
* One app got its new period, or app finished running. priority is being
scheduled. _~=~

* i.e.: Ready for schedule new application.

Current task finished.

- From applications in Ready state, pick the lowest period one and run it.
* Implements priority property of RMS.

* State transits from READY to RUNNING.

- Preempt the running one if necessary.

* Implements preemption property of RMS.

* State transites from RUNNING to READY.

Work with Linux Scheduler

- "Bypass" scheduler, to put an application in sleep or wake it up immediately.

 Utilize kernel scheduling policy...

#include <uapi/linux/sched/types.h>

struct sched_attr attr;
attr.sched_policy = SCHED_NORMAL;
attr.sched_priority = 0;
sched_setattr_nocheck(task, &attr);

struct sched_attr attr;
wake_up_process(task);
attr.sched_policy = SCHED_FIFO;
attr.sched_priority = 99;
sched_setattr_nocheck(task, &attr);

Application is in its new period. Application is being scheduled.

UserApp Yield ‘
Ready
Application with higher
. . . priority is being
- UserApp will yield when its task was done. scheduled.

Current task finished.

* This is done via proc file write.

« When UserApp yields:

* State transits from RUNNING to SLEEPING.
* Wake up the dispatcher kthread.

* Also technically, it cannot yield at SLEEPING or READY state...

That’s MP2 RMS!

Old APIs: timer, proc file write.
New APIs: kthread, scheduler.

We directly give you the code how to work with scheduler.

Proc File Write

Register: RT application registers itself with its PID, Period, Processing Time.
R, PID, PERIOD, COMPUTATION

Yield: RT application has finished its period, yield the CPU.

Y,PID

De-register: RT application has finished and de-registers itself.

D,PID

Proc File Read

- Print all registered applications with its PID, period, and process time.

« Reuse your MP1 code, certainly.

<pid 1>: <period 1>, <processing time 1>
<pid 2>: <period 2>, <processing time 2>

<pid n>: <period n>, <processing time n>

Register and De-Register

- Data structure: custom PCB and linked list.

* Locking can be pretty challenging. Let’s see...

* Remember, clean up after you use.

Ci
- Utilization bound-based admission control:) _ 5 <0693

ieT L

e Caution! FP arithmetic is very expensive in kernel!

* Kernel does not save FP registers during context switch.

User Application

- Register itself to the scheduler (double check to ensure it was registered).

void main(void)

- Yield immediately (signal the scheduler it is ready).

- Work loop:

* Do some “real time work”

* Yield

- Processing time should match with actual time.

. }

// Interact with Proc filesystem
REGISTER(pid, period, processing_time);
// Read ProcFS: Verify the process was admitted
list = READ(ProcFS);
if (!process in the list) exit(1);
// setup everything needed for RT loop
t0 = clock_gettime();
// Proc filesystem
YIELD(PID);
// this is the real-time loop
while (exist jobs)
{
wakeup_time = clock_gettime() - t0;
// factorial computation
do_job();
process_time = clock_gettime() - wakeup_time;
YIELD(PID);
}
// Interact with ProcFS
DEREGISTER(PID);

User Space

L]
I ro tl S : Register self PID to
. /proc/mp2/status

1. Good tools can be helpful. S

2. Develop and test incrementally. AL
3. Try conventional commits.

Register itself to

Deregister from
/proc/mp2/status

YIéLD

Deregister itself from Workload few seconds

Kem%

Proc File Write Callback

Check Deadline Miss YIELD Function Handler

Timer Callback

)

Deregistration ~Change Running State Wake Up
Admission Control Dispatching Thread O fix paizhang module init (mpz init):
- — H
) mp2 example solution paizhang module_exit(mp2_exit);
Accept/Reject Find next task Schedule API)
/ add deadline github-classroom[bot]

® Initial commit github-classroom[bot]

Linux Scheduler
Processes (Critical Section)

‘ List of Registered

Registered Processes

S Total: ~500 lines
My best advise: Start right away!

Read results

Read /proc/mp2/status
and print to screen

