
MP2: Rate-Monotonic CPU Scheduling

Peizhe Liu

CS 423: Operating System Design
Fall 2025



Important Dates

• MP2 is released today.

• The due date is 10/28.

• MP2 will likely cost you several days (probably more than MP1).

• NO LATE SUBMISSION. We found that GitHub allows it, but we won’t.



Goals

• Learn the basics of real-time CPU scheduling.

• Develop a Rate-Monotonic Scheduler for Linux.

• Utilize more kernel APIs, like scheduler, slab allocator, kthread.

• Test your scheduler with a user app.



What you need

• Your MP0 environment.

• VSCode+clangd setup (strongly recommended).

• Instructions on the course website.

• Accept your assignment on GitHub classroom and start right away.



Periodic Tasks Model

• Real time systems often require response time and predictability.

• Surveillance camera that captures a frame per 30ms

• Liu and Layland Periodic Task Model to provide that timing guarantee.

• Every tasks carries a processing time and period.

• Every period, the task must run once, and must finish before the next period 

starts.



Rate-Monotonic Scheduler

• An algorithm to implement the Periodic Tasks Model (methods VS rules).

• Static priority: the shorter the period, the higher the priority.

• Preemptive: higher priority task will preempt lower priority task.

• Utilization bound:

• T: all tasks in the system, including the incoming one

• C: processing time.

• P: period.



MP2 Overview

• Kernel module: implements RMS.

• Communicates with your user application via proc file write.

• Prints list of applications via proc file read.

• Handles the real scheduling via Linux scheduler APIs.

• User application: simulates a RT application for your RMS.

• Registers itself to your kernel module.

• May run multiple instances.



RMS States

• Ready: application is currently in its new period. Ready to be scheduled.

• Running: application is currently running.

• Sleeping: application has finished running in its current period.



State Transitions



Implement RMS

• New period: kernel timer

• Being scheduled/preempt: dispatcher kthread

• Task finished: userapp yield via proc file write



Kernel Timer

• Every application got its own timer.

• Set to its period time.

• When timer fired:

• State transits from SLEEPING to READY.

• Wake up the dispatcher kthread.

• Technically, it cannot fire at READY or RUNNING state…



Dispatcher KThread
• Wake up by timer or yield.

• One app got its new period, or app finished running.

• i.e.: Ready for schedule new application.

• From applications in Ready state, pick the lowest period one and run it.

• Implements priority property of RMS.

• State transits from READY to RUNNING.

• Preempt the running one if necessary.

• Implements preemption property of RMS.

• State transites from RUNNING to READY.



Work with Linux Scheduler

• "Bypass" scheduler, to put an application in sleep or wake it up immediately.

• Utilize kernel scheduling policy…



UserApp Yield

• UserApp will yield when its task was done.

• This is done via proc file write.

• When UserApp yields:

• State transits from RUNNING to SLEEPING.

• Wake up the dispatcher kthread.

• Also technically, it cannot yield at SLEEPING or READY state…



That’s MP2 RMS!

• Old APIs: timer, proc file write.

• New APIs: kthread, scheduler.

• We directly give you the code how to work with scheduler.



Proc File Write

• Register: RT application registers itself with its PID, Period, Processing Time.

• Yield: RT application has finished its period, yield the CPU.

• De-register: RT application has finished and de-registers itself.



Proc File Read

• Print all registered applications with its PID, period, and process time. 

• Reuse your MP1 code, certainly.



Register and De-Register

• Data structure: custom PCB and linked list.

• Locking can be pretty challenging. Let’s see…

• Remember, clean up after you use.

• Utilization bound-based admission control:

• Caution! FP arithmetic is very expensive in kernel!

• Kernel does not save FP registers during context switch.



User Application

• Register itself to the scheduler (double check to ensure it was registered).

• Yield immediately (signal the scheduler it is ready).

• Work loop:

• Do some “real time work”

• Yield

• Processing time should match with actual time.



Total: ~500 lines
My best advise: Start right away!

Pro tips:
1. Good tools can be helpful.
2. Develop and test incrementally.
3. Try conventional commits.


