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Disk Internals

Seek: move head to the target track
Rotate: wait for target sector to be under head
Transfer: access data
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HDD in Action [
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Disk Access lime Example 1

« Disk Parameters

- Advertised average seek time is 12 ms
= Disk spins at 7200 RPM
= Transfer rate is 4 MB/sec

« Assume idle disk (i.e., no queuing delay)

Disk Access Time=seek time +
rotational delay +
transfer time
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Disk Access lime Example

« Disk Parameters

- Advertised average seek time is 12 ms
= Disk spins at 7200 RPM
= Transfer rate is 4 MB/sec

« Assume idle disk (i.e., no queuing delay)

« Q1: What is the total time to read 500
random sectors?

« Q2: What is the total time to read 500
sequential sectors (assume on same track)?

I
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Disk Access lime Example 1

« What is the total time to read 500 random
sectors?
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Disk Access lime Example 1

« What is the total time to read 500 sequential
sectors (assume on same track)?
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Disk Access Time Example [ (

See the difference between random and
sequential I0 speeds on hard drives?

Always design for sequential IO on HDDs!

Random IO performance (somewhat) better
with SSDs. High-level reason?
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Disk Access lime Example 1

Which one do you think will be faster on HDD?
copying many small files
VS. copy one large file?
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Disk Scheduling

= Which disk request is serviced first?
= FCFS
= Shortest seek time first
= SCAN (Elevator)
= C-SCAN (Circular SCAN)
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Disk Scheduling Decision — Given a series of access

requests, on which track should the disk arm be placed
next to maximize fairness, throughput, etc?
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FIFO (FCFS) Order

Method

= First come first serve

Pros?
« Fairness among requests
- In the order applications expect

Cons?

= Arrival may be on random spots on the
disk (long seeks)

= When is it particularly bad?

Track
0 53 199

Time

98, 183, 37, 122, 14, 124, 65, 67
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SSTF (Shortest Seek Time First) [

Track
0 53 199

=« Method

= Pick the one closest on disk
(greedy approach)

=« Pros?
= lries to minimize seek time

« Cons?
« Starvation

« Questions
= Is SSTF optimal?
= IS this fair to all disk accesses?
= Can we avoid starvation?

Time

98, 183, 37, 122, 14, 124, 65, 67
(65, 67,37, 14, 98, 122, 124, 183)
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SCAN (Elevator)

= Move outer to inner — service all
requests along the way

= Move inner to outer — service all
along the way

« Adv compared to SSTF;:
« Bounded time for each request
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C-SCAN (Circular SCAN) |

Like SCAN _
But, wrap around (i.e., only one
dlreCtIOI’S

= Adv over SCAN

« By seeking to opposite side,
moves head to where pending
requests are likely to be denser

=« More fair

« Cons | | |
= Do nothing on the return (i.e., higher
overhead)
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Scheduling Algorithms

Algorithm Name Description

FCFS First-come first-served

SSTF Shortest seek time first; process the request that reduces
next seek time

SCAN (aka Elevator) Move head from end to end (has a current direction)

C-SCAN Only service requests in one direction (circular SCAN)

LOOK Similar to SCAN, but do not go all the way to the end of
the disk.

C-LOOK Circular LOOK.
Similar to C-SCAN, but do not go all the way to the end
of the disk.
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VWho does Scheduling!

The OS?
The disk itself?

Both?
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The OS?
The disk itself?

Both?
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Linux I/O Schedulers

e What disk (I/0O) schedulers are available in Linux?

S cat /sys/block/sda/queue/scheduler
noop deadline [cfq]

N scheduler enabled on our VMs

e As of Linux 2.6.10, it is possible to change the IO
scheduler for a given block device on the fly!

e How to enable a specific scheduler?
S echo SCHEDNAME > /sys/block/DEV/queue/scheduler

e SCHEDNAME = Desired I/O scheduler

e DEV =device name (e.g., sda)
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Linux NOOP Scheduler 1

e Insert all incoming I/O requests into a simple FIFO
e Merges duplicate requests (results can be cached)

e When would this be useful?
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Linux NOOP Scheduler T

e Insert all incoming I/O requests into a simple FIFO
e Merges duplicate requests (results can be cached)
e When would this be useful?

e Solid State Drives! Avoids scheduling overhead

e Scheduling is handled at a lower layer of the I/0
stack (e.g., Disk firmware, RAID Controller, Network-

Attached)

e Host doesn’t actually know details of sector positions
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Linux Deadline Scheduler

e Imposes a deadline on all I/O operations to prevent
starvation of requests

e Maintains 4 queues:

e 2 Sorted Queues (R, W), order by Sector

e 2 Deadline Queues (R, W), order by Exp Time

e Scheduling Decision:
e Check if 1st request in deadline queue has expired.
e Otherwise, serve request(s) from Sorted Queue.

e Prioritizes reads (DL=500ms) over writes (DL=5s) .Why?

I
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Linux CFQ Scheduler

e CFQ = Completely Fair Queueing!
e Maintain per-process queues.
o Allocate time slices for each queue to access the disk

e |/O Priority dictates time slice, # requests per queue

e Asynchronous requests handled separately — batched
together in priority queues

e CFQ is often the default scheduler
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What Happens? I

Assume 2 processes each calling read() with C-SCAN
void reader(int d) {

char buf{1024]; int rv;

while((rv = read(fd, buf)) 1= 0) {

assert(rv);

// takes short time, e.g,, Tms

process(buf, rv);

)
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What Happens? I

Assume 2 processes each calling read() with C-SCAN

void reader(int fd) { P1: read 100, 101

char buf{1024]; int rv; P2: read 900, 901
while((rv = read(fd, buf)) 1= 0) {

assert(rv); After T ms

/] takes short time, e.g., Tms P1: read 102, 103
process(buf, rv); P2: read 902, 903
J
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VWork Conservation

Work conserving schedulers always try to do
work if there's work to be done

Sometimes, it's better to wait instead if system
anticipates another request will arrive

Possible improvements from |/O merging
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Linux Anticipatory Scheduler [

e Deceptive Idleness: A process appears to be finished
reading from disk, but is actually processing data.
Another (nearby) request is coming soon!

e Bad for synchronous read workloads because seek
time is increased.

e Anticipatory Scheduling: Idle for a few milliseconds
after a read operation in anticipation of another close-
by read request.

e Deprecated — CFQ can approximate.
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summary

Disks: specific geometry with platters, spindle, tracks,
sector, head, etc

DAT = seek time + rotation delay + transfer time

Sequential bandwidth is much higher than random
bandwidth

Scheduling approaches: FCFS, SSTF, SCAN, C-SCAN

Schedulers are at multiple layers of the stack

Need to think together (e.g.,, Linux NOOP)
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VVhat is above!

® Above the disk and IO scheduler? The file system!

Abstracts many of the underlying details to higher-level
applications

1. Presents data as named files— neat, clean abstraction:
need not work with sector #s

2. Can be byte-oriented instead of blocks/sectors
3. Offer protection and sharing among users

4. Ensures data reliability
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Disk Layout for a FS

Disk Iayout na typlcal file System

' iblock 0 : iblock 1 ! iblock 2 ! iblock 3 ! iblock 4
134{3 "“9 0[51|64|65|66|67

01231111

' 4|5|6|7 |2C 1 2|53|54/55|68|69|70|7 1
Sii[e[cI@ i-bmap d-bmap 8| 10}11 %Eﬁﬁ%7@]§9§$3747$
12]13}14}1528 5{46}47160)61162163(76(77(78|79

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

« Data Structures:
« File data blocks: File contents (not shown)
« Inodes: low-level file number
= Directories: File names pointing to inodes
= Bitmaps: track which disk blocks are free
« Data bitmap (d-bmap)
« Inode bitmap (i-bmap)
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