CS 423

Operating System Design
https://cs423-uiuc.github.io/fall25

Tianyin Xu

tyxu@illinois.edu

* Thanks for Professors Adam Bates and Ram Alagappan for the slides.

CS 423: Operating Systems Design

https://cs423-uiuc.github.io/fall25
https://cs423-uiuc.github.io/fall25
https://cs423-uiuc.github.io/fall25

Platter

Motor
Read/write
head
Actuator
o HDDs not SOTA
lntel-Face St 2 — | by any means
Jumpers But still relevant!

Power supp|y

CS 423: Operating Systems Design

C

A
%
S

=,

A: Track.

CB: ggg’ig:.of Track.))))\\\\\\\\\\
D: File 7

Disk Internals

Seek: move head to the target track
Rotate: wait for target sector to be under head
Transfer: access data

CS 423: Operating Systems Design

HDD in Action [

CS 423: Operating Systems Design 6

Disk Access lime Example 1

« Disk Parameters

- Advertised average seek time is 12 ms
= Disk spins at 7200 RPM
= Transfer rate is 4 MB/sec

« Assume idle disk (i.e., no queuing delay)

Disk Access Time=seek time +
rotational delay +
transfer time

CS 423: Operating Systems Design I

Disk Access lime Example

« Disk Parameters

- Advertised average seek time is 12 ms
= Disk spins at 7200 RPM
= Transfer rate is 4 MB/sec

« Assume idle disk (i.e., no queuing delay)

« Q1: What is the total time to read 500
random sectors?

« Q2: What is the total time to read 500
sequential sectors (assume on same track)?

I

CS 423: Operating Systems Design

Disk Access lime Example 1

« What is the total time to read 500 random
sectors?

CS 423: Operating Systems Design

Disk Access lime Example 1

« What is the total time to read 500 sequential
sectors (assume on same track)?

CS 423: Operating Systems Design

Disk Access Time Example [(

See the difference between random and
sequential I0 speeds on hard drives?

Always design for sequential IO on HDDs!

Random IO performance (somewhat) better
with SSDs. High-level reason?

CS 423: Operating Systems Design

Disk Access lime Example 1

Which one do you think will be faster on HDD?
copying many small files
VS. copy one large file?

CS 423: Operating Systems Design

Disk Scheduling

= Which disk request is serviced first?
= FCFS
= Shortest seek time first
= SCAN (Elevator)
= C-SCAN (Circular SCAN)

C

A
S Y%
S
=S

il

===

A: Track. \\\\\\\\\\{\\
N\
C: Sector of Track. \\\\\

B: Sector. \\\
D: File S

D
Disk Scheduling Decision — Given a series of access

requests, on which track should the disk arm be placed
next to maximize fairness, throughput, etc?

CS 423: Operating Systems Design

FIFO (FCFS) Order

Method

= First come first serve

Pros?
« Fairness among requests
- In the order applications expect

Cons?

= Arrival may be on random spots on the
disk (long seeks)

= When is it particularly bad?

Track
0 53 199

Time

98, 183, 37, 122, 14, 124, 65, 67

CS 423: Operating Systems Design

SSTF (Shortest Seek Time First) [

Track
0 53 199

=« Method

= Pick the one closest on disk
(greedy approach)

=« Pros?
= lries to minimize seek time

« Cons?
« Starvation

« Questions
= Is SSTF optimal?
= IS this fair to all disk accesses?
= Can we avoid starvation?

Time

98, 183, 37, 122, 14, 124, 65, 67
(65, 67,37, 14, 98, 122, 124, 183)

CS 423: Operating Systems Design

SCAN (Elevator)

= Move outer to inner — service all
requests along the way

= Move inner to outer — service all
along the way

« Adv compared to SSTF;:
« Bounded time for each request

CS 423: Operating Systems Design

C-SCAN (Circular SCAN) |

Like SCAN _
But, wrap around (i.e., only one
dlreCtIOI’S

= Adv over SCAN

« By seeking to opposite side,
moves head to where pending
requests are likely to be denser

=« More fair

« Cons | | |
= Do nothing on the return (i.e., higher
overhead)

CS 423: Operating Systems Design

Scheduling Algorithms

Algorithm Name Description

FCFS First-come first-served

SSTF Shortest seek time first; process the request that reduces
next seek time

SCAN (aka Elevator) Move head from end to end (has a current direction)

C-SCAN Only service requests in one direction (circular SCAN)

LOOK Similar to SCAN, but do not go all the way to the end of
the disk.

C-LOOK Circular LOOK.
Similar to C-SCAN, but do not go all the way to the end
of the disk.

CS 423: Operating Systems Design

VWho does Scheduling!

The OS?
The disk itself?

Both?

CS 423: Operating Systems Design

The OS?
The disk itself?

Both?

CS 423: Operating Systems Design

Linux I/O Schedulers

e What disk (I/0O) schedulers are available in Linux?

S cat /sys/block/sda/queue/scheduler
noop deadline [cfq]

N scheduler enabled on our VMs

e As of Linux 2.6.10, it is possible to change the IO
scheduler for a given block device on the fly!

e How to enable a specific scheduler?
S echo SCHEDNAME > /sys/block/DEV/queue/scheduler

e SCHEDNAME = Desired I/O scheduler

e DEV =device name (e.g., sda)

CS 423: Operating Systems Design

Linux NOOP Scheduler 1

e Insert all incoming I/O requests into a simple FIFO
e Merges duplicate requests (results can be cached)

e When would this be useful?

CS 423: Operating Systems Design

Linux NOOP Scheduler T

e Insert all incoming I/O requests into a simple FIFO
e Merges duplicate requests (results can be cached)
e When would this be useful?

e Solid State Drives! Avoids scheduling overhead

e Scheduling is handled at a lower layer of the I/0
stack (e.g., Disk firmware, RAID Controller, Network-

Attached)

e Host doesn’t actually know details of sector positions

CS 423: Operating Systems Design

Linux Deadline Scheduler

e Imposes a deadline on all I/O operations to prevent
starvation of requests

e Maintains 4 queues:

e 2 Sorted Queues (R, W), order by Sector

e 2 Deadline Queues (R, W), order by Exp Time

e Scheduling Decision:
e Check if 1st request in deadline queue has expired.
e Otherwise, serve request(s) from Sorted Queue.

e Prioritizes reads (DL=500ms) over writes (DL=5s) .Why?

I

CS 423: Operating Systems Design

Linux CFQ Scheduler

e CFQ = Completely Fair Queueing!
e Maintain per-process queues.
o Allocate time slices for each queue to access the disk

e |/O Priority dictates time slice, # requests per queue

e Asynchronous requests handled separately — batched
together in priority queues

e CFQ is often the default scheduler

CS 423: Operating Systems Design

What Happens? I

Assume 2 processes each calling read() with C-SCAN
void reader(int d) {

char buf{1024]; int rv;

while((rv = read(fd, buf)) 1= 0) {

assert(rv);

// takes short time, e.g,, Tms

process(buf, rv);

)

CS 423: Operating Systems Design

What Happens? I

Assume 2 processes each calling read() with C-SCAN

void reader(int fd) { P1: read 100, 101

char buf{1024]; int rv; P2: read 900, 901
while((rv = read(fd, buf)) 1= 0) {

assert(rv); After T ms

/] takes short time, e.g., Tms P1: read 102, 103
process(buf, rv); P2: read 902, 903
J

CS 423: Operating Systems Design

VWork Conservation

Work conserving schedulers always try to do
work if there's work to be done

Sometimes, it's better to wait instead if system
anticipates another request will arrive

Possible improvements from |/O merging

CS 423: Operating Systems Design

Linux Anticipatory Scheduler [

e Deceptive Idleness: A process appears to be finished
reading from disk, but is actually processing data.
Another (nearby) request is coming soon!

e Bad for synchronous read workloads because seek
time is increased.

e Anticipatory Scheduling: Idle for a few milliseconds
after a read operation in anticipation of another close-
by read request.

e Deprecated — CFQ can approximate.

CS 423: Operating Systems Design

summary

Disks: specific geometry with platters, spindle, tracks,
sector, head, etc

DAT = seek time + rotation delay + transfer time

Sequential bandwidth is much higher than random
bandwidth

Scheduling approaches: FCFS, SSTF, SCAN, C-SCAN

Schedulers are at multiple layers of the stack

Need to think together (e.g.,, Linux NOOP)

CS 423: Operating Systems Design

VVhat is above!

® Above the disk and IO scheduler? The file system!

Abstracts many of the underlying details to higher-level
applications

1. Presents data as named files— neat, clean abstraction:
need not work with sector #s

2. Can be byte-oriented instead of blocks/sectors
3. Offer protection and sharing among users

4. Ensures data reliability

CS 423: Operating Systems Design

Disk Layout for a FS

Disk Iayout na typlcal file System

' iblock 0 : iblock 1 ! iblock 2 ! iblock 3 ! iblock 4
134{3 "“9 0[51|64|65|66|67

01231111

' 4|5|6|7 |2C 1 2|53|54/55|68|69|70|7 1
Sii[e[cI@ i-bmap d-bmap 8| 10}11 %Eﬁﬁ%7@]§9§3747
12]13}14}1528 5{46}47160)61162163(76(77(78|79

OKB 4KB 8KB 12KB 16KB 20KB 24KB 28KB 32KB

« Data Structures:
« File data blocks: File contents (not shown)
« Inodes: low-level file number
= Directories: File names pointing to inodes
= Bitmaps: track which disk blocks are free
« Data bitmap (d-bmap)
« Inode bitmap (i-bmap)

CS 423: Operating Systems Design

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Linux I/O Schedulers
	Slide 22: Linux NOOP Scheduler
	Slide 23: Linux NOOP Scheduler
	Slide 24: Linux Deadline Scheduler
	Slide 25: Linux CFQ Scheduler
	Slide 26: What Happens?
	Slide 27: What Happens?
	Slide 28: Work Conservation
	Slide 29: Linux Anticipatory Scheduler
	Slide 30: Summary
	Slide 31: What is above?
	Slide 32

