
CS 423: Operating Systems Design

Tianyin Xu
tyxu@illinois.edu

CS 423
Operating System Design

https://cs423-uiuc.github.io

* Thanks Adam Bates for the slides.

mailto:tyxu@Illinois.edu
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/


CS 423: Operating Systems Design

Storage Hierarchy

2

CPU Registers

Cache

Memory

Secondary Storage

Performance
Size

32-64 bits

4-128 words

512-16k words 



CS 423: Operating Systems Design

Problem Statement

3

We have limited amounts of fast resources,
and large amounts of slower resources…

How to create the illusion of an abundant fast resource?



CS 423: Operating Systems Design

Overlay Area

History: Mem Overlays

4

Overlay Manager

Main Program
Overlay 1

Overlay 2

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space



CS 423: Operating Systems Design

Overlay 1

History: Mem Overlays

5

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay 2



CS 423: Operating Systems Design

History: Mem Overlays

6

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay Area

Overlay 2



CS 423: Operating Systems Design

Overlay 2

History: Mem Overlays

7

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay 2



CS 423: Operating Systems Design

History: Mem Overlays

8

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay Area

Overlay 2



CS 423: Operating Systems Design

History: Mem Overlays

9

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay 3

Overlay 2



CS 423: Operating Systems Design

History: Mem Overlays

10

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay Area

Overlay 2



CS 423: Operating Systems Design

Overlay 1

History: Mem Overlays

11

Overlay Manager

Main Program
Overlay 1

Overlay 3

Secondary Storage
0K

5k

7k

12k

Used when process memory requirement exceeded the physical memory space

Overlay 2



CS 423: Operating Systems Design 12

0k

4k

16k

64k

128k

• Approach: Multiprogramming 
with fixed memory partitions

• Divides memory into n fixed 
partitions (possibly unequal)

• Problem?

Free Space

History: Fixed Partition Allocation



CS 423: Operating Systems Design 13

0k

4k

16k

64k

128k

• Approach: Multiprogramming 
with fixed memory partitions

• Divides memory into n fixed 
partitions (possible unequal)

• Problem?

Program 1

Program 2

Program 3 Free Space

History: Fixed Partition Allocation



CS 423: Operating Systems Design 14

Free Space

0k

4k

16k

64k

128k

• Approach: Multiprogramming 
with fixed memory partitions

• Divides memory into n fixed 
partitions (possible unequal)

• Problem?
• Internal Fragmentation

History: Fixed Partition Allocation

Program 1

Program 2

Program 3



CS 423: Operating Systems Design 15

History: Fixed Partition Allocation

■ Separate input queue for each partition
■ Sorting incoming jobs into separate queues
■ Inefficient utilization of memory

■ when the queue for a large partition is empty but the 
queue for a small partition is full. Small jobs have to wait 
to get into memory even though plenty of memory is 
free. 

■ One single input queue for all partitions. 
■ Allocate a partition where the job fits in. 



CS 423: Operating Systems Design 16

History: Relocation

■ Correct starting address when a program should start in the 
memory 

■ Different jobs will run at different addresses
■ When a program is linked, the linker must know at what address the 

program will begin in memory. 
■ Enter “Logical addresses”

■ Logical address space , range (0 to max) 
■ Physical addresses, Physical address space range (R+0 to R+max) for 

base value R. 
■ User program never sees the real physical addresses 

■ Relocation register 
■ Mapping requires hardware with the base register



CS 423: Operating Systems Design 17

History: Relocation Register

Memory

Base Register

CPU 
Instruction

Address
+

BA

MA MA+BA

Physical
Address

Logical
Address



CS 423: Operating Systems Design

Monitor

Monitor

Monitor

Monitor

Monitor

18

History: Variable Partition 
Allocation

Job 1 Job 2 Job 3 Job 4 Free1

Job 1 Job 3 Job 4 Free2

Job 1 Job 3 Job 4 FreeJob 53

Job 3 Job 4 FreeJob 5 Job 64

Job 3 FreeJob 5 Job 6Job 7 Job 85

Memory wasted by External Fragmentation



CS 423: Operating Systems Design 19

History: Storage Placement Strategy
■ Best Fit?
■ Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size.
■ Problem: Creates small holes that can't be used

■ First Fit?
■ Use the first available hole whose size is sufficient to meet

the need.
■ Problem: Creates average size holes.

■ Next Fit?
■ Minor variation of first fit: search from the last hole used.
■ Problem: slightly worse performance than first fit.

■ Worst Fit?
■ Use the largest available hole.
■ Problem: Gets rid of large holes making it difficult to run

large programs.



CS 423: Operating Systems Design

Virtual Memory

20

■ Provide user with virtual memory that is as big as 
user needs

■ Store virtual memory on disk
■ Cache parts of virtual memory being used in real 

memory
■ Load and store cached virtual memory without user 

program intervention



CS 423: Operating Systems Design

Paging

21

3 1
2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

Request Page 3…



CS 423: Operating Systems Design 22

Paging

3 1
1 2

3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

Request Page 1…



CS 423: Operating Systems Design 23

Paging

3 1
1
6

2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

Request Page 6…



CS 423: Operating Systems Design 24

Paging

3 1
1
6

2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

2

Request Page 2…



CS 423: Operating Systems Design 25

Paging
Request Page 8. Swap Page 1 to Disk First…

3 1
1
6

2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

2



CS 423: Operating Systems Design 26

Paging
Request Page 8. … now load Page 8 into Memory.

3 1

6
2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

2

8



CS 423: Operating Systems Design

Shared Pages

27

Note: Virtual Memory also supports shared pages.



CS 423: Operating Systems Design

Page Mapping Hardware

28

Contents(P,D)

Contents(F,D)

P D

F D

P→F

0
1
0
1
1
0
1

Page Table
Virtual MemoryVirtual Address (P,D)

Physical Address (F,D)

P

F

D

D

4

Physical Memory



CS 423: Operating Systems Design

Page Mapping Hardware

29

Contents(4006)

Contents(5006)

004 006

005 006

4→5

0
1
0
1
1
0
1

Page Table
Virtual Memory

Physical Memory

Virtual Address (004006)

Physical Address (F,D)

004

005

006

006

4

Page size 1000
Number of Possible Virtual Pages 1000
Number of Page Frames 8



CS 423: Operating Systems Design

Page Faults

30

■ Occur when we access a virtual page that is not 
mapped into any physical page
■ A fault is triggered by hardware

■ Page fault handler (in OS’s VM subsystem)
■ Find if there is any free physical page available

■ If no, evict some resident page to disk (swapping space)
■ Allocate a free physical page
■ Load the faulted virtual page to the prepared physical 

page
■ Modify the page table



CS 423: Operating Systems Design

Reasoning about Page Tables

31

■ On a 32 bit system we have 2^32 B virtual address space
■ i.e., a 32 bit register can store 2^32 values

■ # of pages are 2n (e.g., 512 B, 1 KB, 2 KB, 4 KB…)
■ Given a page size, how many pages are needed?
■ e.g., If 4 KB pages (2^12 B), then 2^32/2^12=…
■ 2^20 pages required to represent the address space

■ But! each page entry takes more than 1 Byte of space to 
represent.
■ suppose page size is 4 bytes (Why?)
■ (2*2) * 2^ 20 = 4 MB of space required to represent our 

page table in physical memory.
■ What is the consequence of this?


