CS 423

Operating System Design
https://cs423-uiuc.github.io

Tianyin Xu
tyxu@illinois.edu

* Thanks Adam Bates for the slides.

CS 423: Operating Systems Design

mailto:tyxu@Illinois.edu
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/

‘ VWhat We will Learn [oday

e Multi-Level Feedback Queue (MLFQ) Scheduler
e Linux Schedulers

e Early Linux Schedulers

e O(N), O(1) Schedulers

e Completely Fair Scheduler (CFS)

e Multi-processor Scheduling

CS 423: Operating Systems Design

Principles

“CPU scheduling is not planning; there is not
an optimal solution. Rather CPU scheduling is

about balancing goals and making difficult
tradeoffs.”

-- Joseph T. Meehean

CS 423: Operating Systems Design

‘ What Are Scheduling Goals?

e What are the goals of a scheduler?

e Linux Scheduler’s Goals:

= Generate illusion of concurrency

« Maximize resource utilization (e.g., mix CPU and
I/O bound processes appropriately)

= Meet needs of both I/O-bound and CPU-bound

processes
= Give I/O-bound processes better interactive response
= Do not starve CPU-bound processes

= Support Real-Time (RT) applications

CS 423: Operating Systems Design

Farly Linux Schedulers

« Linux 1.2: circular queue w/ round-robin policy.

= Simple and minimal.
= Did not meet many of the aforementioned goals

« Linux 2.2: introduced scheduling classes (real-
time, non-real-time).

/* Scheduling Policies

*/

#define SCHED OTHER 0 // Normal user tasks (default)
#define SCHED FIFO 1 // RT: Will almost never be preempted
#define SCHED RR 2 // RT: Prioritized RR queues

I

CS 423: Operating Systems Design

‘ Why 2 RT mechanisms!

Two Fundamental Mechanisms...
= Prioritization
= Resource partitioning

CS 423: Operating Systems Design

Prioritization

SCHED_FIFO
« Used for real-time processes

« Conventional preemptive fixed-priority

scheduling
= Current process continues to run until it ends or a
higher-priority real-time process becomes runnable

= Same-priority processes are scheduled FIFO

CS 423: Operating Systems Design

Partitioning

SCHED_RR
« Used for real-time processes
« CPU “partitioning” among same priority
processes
= Current process continues to run until it

ends or its time quantum expires
= Quantum size determines the CPU share

= Processes of a lower priority run when no
processes of a higher priority are present

CS 423: Operating Systems Design

Linux 2.4 Scheduler

= 2.4. O(N) scheduler.
= Epochs — slices: when blocked before the slice
ends, half of the remaining slice is added in the
next epoch.
= Simple.
- Lacked scalability.
= Weak for real-time systems.

CS 423: Operating Systems Design

Linux 2.6 Scheduler

= O(1) scheduler

= Tasks are indexed according to their priority
[0,139]
= Real-time [0, 99]
= Non-real-time [100, 139]

CS 423: Operating Systems Design

SCHED_NORMAL

« Used for non real-time processes
« Complex heuristic to balance the needs of I/O and CPU centric
applications
= Processes start at 120 by default
= Static priority
= A "nice” value: 19 to -20.
= Inherited from the parent process
= Altered by user (negative values require special permission)
« Dynamic priority
= Based on static priority and applications characteristics
(interactive or CPU-bound)
= Favor interactive applications over CPU-bound ones

= Timeslice is mapped from priority

CS 423: Operating Systems Design

= Used for non real-time processes

« Complex heuristic to balance the needs of I/O and CPU centric
applications

Static Priority: Handles assigned task priorities

Dynamic Priority: Favors interactive tasks

ssion
Combined, these mechanisms govern CPU)

access in the SCHED NORMAL scheduler.

(interactive or CPU-bound)
= Favor interactive applications over CPU-bound ones

= Timeslice is mapped from priority

CS 423: Operating Systems Design

SCHED NORMAL Heuristic [

How does a static priority translate to real CPU access?

if (static priority < 120)
Quantum = 20 x (140 — static priority)

else
Quantum = 5 x (140 — static priority)

(in ms)

Higher priority > Larger quantum

CS 423: Operating Systems Design

SCHED NORMAL Heuristic [

How does a static priority translate to CPU access?

Description Static Nice Base time
P priority value quantum

Highest static _

priority 100 20 800 ms
High static i

priority 110 10 600 ms
Default static

priority 120 0 100 ms
Low static

priority 130 +10 50 ms
Lowes_t sfcatic 139 +19 5 ms

priority

CS 423: Operating Systems Design

SCHED NORMAL Heuristic [

How does a dynamic priority adjust CPU access?

bonus = min (10, (avg. sleep time / 100) ms)

dynamic priority =

avg. sleep time 1s 0 => bonus 1s 0

avg. sleep time 1s 100 ms => bonus 1s 1
avg. sleep time 1s 1000 ms => bonus is 10
avg. sleep time is 1500 ms => bonus is 10

Your bonus increases a leep more.
our bonus increases 5 you siecp more Max priority #is still 139

+

max (100, min (static priority — bonus + 5, 139))

Min priority # is still 100 ‘Bonus is subtracted to increase priorit

CS 423: Operating Systems Design

SCHED NORMAL Heuristic [

How does a dynamic priority adjust CPU access?

What's the problem with this (or any) heuristic?

DONUS 1INCreasces as you Siecp more. Max priority # s still 139

dynamic priority = *
max (100, min (static priority — bonus + 5, 139))

Min priority # is still 100 Bonus is subtracted to increase priorit

CS 423: Operating Systems Design

Completely Fair Scheduler [

« Goal: Fairly divide a CPU evenly among all competing
processes with a clean implementation

= Merged into the 2.6.23 release of the Linux kernel and is
the default scheduler.

= Created by In?(0 Molnar in a short burst of creativity which
led to a 100K kernel patch developed in 62 hours.

Basic Idea:

« Virtual Runtime (vruntlme) When a process runs it
accumulates “virtual time.” If priority is high, virtual time
accumulates slowly. If priority is low, virtual time
accumulates quicky

« Itis a “catch up” policy — task with smallest amount of
virtual time gets to run next.

CS 423: Operating Systems Design

Completely Fair Scheduler [

= Scheduler maintains a red-black tree where nodes are
ordered according to received virtual execution time

=« Node with smallest virtual received execution time is
picked next

= Priorities determine accumulation rate of virtual

execution time
- Higher priority > slower accumulation rate

CS 423: Operating Systems Design

Completely Fair Scheduler [

Y e are
o) Property of CFS: If all task’s virtual clocks run at¥3

exactly the same speed, they will all get the same
o ‘amount of time on the CPU.
Pl

_p How does CFS account for I/0-intensive tasks?

IS

execution time
- Higher priority > slower accumulation rate

CS 423: Operating Systems Design

Example I

= Three tasks A, B, C accumulate virtual time
at a rate of 1, 2, and 3, respectively.

« What is the expected share of the CPU that
each gets?

Strategy: How many quantums Q01: A => {A:1, B:0, C:0}
required for all clocks to be equal? (¢02: B => {A:1, B:2, C:0}
e L east common multiple is 6 Q03: C => {A:1, B:2, C:3}

e To reach VT=6... Q04: A => {A:2, B:2, C:3}

e A is scheduled 6 times Q05: B => {A:2, B:4, C:3}

e B is scheduled 3 times Q06: A => {A:3, B:4, C:3}

e Cis scheduled 2 times. Q07: A => {A:4, B:4, C:3}

e 6+3+2 =11 Q08: C => {A:4, B:4, C:6}

e A =>6/11 of CPU time Q09: A => {A:5, B:4, C:6}

e B=>3/11 of CPU time Q10: B => {A:5, B:6, C:6}

e C=>2/11 of CPU time Qll: A => {A:6, B:6, C:6}

CS 423: Operating Systems Design

Red-Black Trees

= CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:

1. Each node is red or black

2. Root node is black

3. All leaves (NIL) are black

4. If node is red, both children are black

5. Every path from a given node to its
descendent NIL leaves contains the

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

same humber of black nodes
- Virtual runtime
h Most need of CPU Least need of CPU

CS 423: Operating Systems Design

Red-Black Trees

= CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:

1. Each node is red or black

2. Root node is black

3. All leaves (NIL) are black

4. If node is red, both children are black

5. Every path from a given node to its
descendent NIL leaves contains the

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

same humber of black nodes
- Virtual runtime
h Most need of CPU Least need of CPU

Takeaway: In an RB Tree, the path from the root to the farthest leaf is no
more than twice as long as the path from the root to the nearest leaf.

CS 423: Operating Systems Design

Red-Black Trees

= CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

Benefits over run queue:

e O(1) access to leftmost node
(lowest virtual time).

e O(log n) insert

e O(log n) delete

e self-balancing

Virtual runtime

- Most need of CPU Least need of CPU

CS 423: Operating Systems Design

Account for /O

One problem with picking the lowest vruntime to run next
arises with jobs that have gone to sleep for a long period of
time. Imagine two processes, A and B, one of which (A) runs
continuously, and the other (B) which has gone to sleep for a
long period of time (say, 10 seconds). When B wakes up, its
vruntime will be 10 seconds behind A’s, and thus (if we're not
careful), B will now monopolize the CPU for the next 10
seconds while it catches up, effectively starving A.

What's the solution? ©

CS 423: Operating Systems Design

How/when to preempt? [

= Kernel sets the need resched flag (per-process var) at
various locations

= scheduler tick (), a process used up its timeslice

« try to wake up (), higher-priority process awaken

= Kernel checks need resched at certain points, if safe,
schedule () Wwill be invoked

« User preemption
= Return to user space from a system call or an interrupt
handler
= Kernel preemption
= A task in the kernel explicitly calls schedule ()

= A task in the kernel blocks (which results in a call to
schedule ())

CS 423: Operating Systems Design

A) A Note on CPU Affinity

We’'ve had lots of great (abstraction-violating) questions
about how multiprocessor scheduling works in practice...

e To answer, consider CPU Affinity — scheduling a
process to stay on the same CPU as long as possible

e Benefits?

e Soft Affinity — Natural occurs through efficient
scheduling

e Present in O(1) onward, absent in O(N)

e Hard Affinity — Explicit request to scheduler made
through system calls (Linux 2.5+)

CS 423: Operating Systems Design

Multi-Processor Scheduling I

e CPU affinity would seem to necessitate a multi-queue
approach to scheduling... but how?

e Asymmetric Multiprocessing (AMP): One processor
(e.g., CPU 0) handles all scheduling decisions and 1/0O
processing, other processes execute only user code.

e Symmetric Multiprocessing (SMP): Each processor is
self-scheduling. Could work with a single queue, but
also works with private queues.

e Potential problems?

CS 423: Operating Systems Design

SMP Load Balancing

e SMP systems require load balancing to keep the
workload evenly distributed across all processors.

e Two general approaches:

e Push Migration: Task routinely checks the load on
each processor and redistributes tasks between
processors if imbalance is detected.

e Pull Migration: Idle processor can actively pull
waiting tasks from a busy processor.

CS 423: Operating Systems Design

‘ Other scheduling policies

« What if you want to maximize throughput?

CS 423: Operating Systems Design

‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

CS 423: Operating Systems Design

‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

« What if you want to meet all deadlines?

CS 423: Operating Systems Design

‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

« What if you want to meet all deadlines?
= Earliest deadline first!
= Problem?

CS 423: Operating Systems Design

‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

« What if you want to meet all deadlines?

= Earliest deadline first!

= Problem?

= Works only if you are not “overloaded”. If the total
amount of work is more than capacity, a domino effect
occurs as you always choose the task with the nearest
deadline (that you have the least chance of finishing by
the deadline), so you may miss a lot of deadlines!

CS 423: Operating Systems Design

EDF Domino Effect

« Problem:

- It is Monday. You have a homework due tomorrow
(Tuesday), a homework due Wednesday, and a homework
due Thursday

= It takes on average 1.5 days to finish a homework.

= Question: What is your best (scheduling) policy?

CS 423: Operating Systems Design

EDF Domino Effect

= Problem:
- It is Monday. You have:
= a homework (A) due tomorrow (Tuesday),
= a homework (B) due Wednesday,
= and a homework (C) due Thursday.
= It takes on average 1.5 days to finish a homework.

= Question: What is your best (scheduling) policy?
= You could instead skip tomorrow’s homework and work on
the next two, finishing them by their deadlines
= Note that EDF is bad: It always forces you to work on the
next deadline, but you have only one day between
deadlines which is not enough to finish a 1.5 day

homework — you might not complete any of the three
homeworks!

CS 423: Operating Systems Design

	Default Section
	Slide 1
	Slide 2: What We will Learn Today
	Slide 3
	Slide 4: What Are Scheduling Goals?

	MLFQ
	Slide 5
	Slide 6: Why is MLFQ a good design?
	Slide 7: Why is MLFQ a good design?
	Slide 8: Basic Design
	Slide 9: Basic Design
	Slide 10: Limitations?
	Slide 11: Priority Boost
	Slide 12: Better Accounting
	Slide 13: Sounds perfect?

	Early Linux Schedulers
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

	CFS
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

	Preemption
	Slide 34

	Multi-processor scheduling
	Slide 35: A Note on CPU Affinity
	Slide 36: Multi-Processor Scheduling
	Slide 37

	Other scheduling policies
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

