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‘ VWhat We will Learn [ oday

e Multi-Level Feedback Queue (MLFQ) Scheduler
e Linux Schedulers

e Early Linux Schedulers

e O(N), O(1) Schedulers

e Completely Fair Scheduler (CFS)

e Multi-processor Scheduling
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Principles

“CPU scheduling is not planning; there is not
an optimal solution. Rather CPU scheduling is

about balancing goals and making difficult
tradeoffs.”

-- Joseph T. Meehean
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‘ What Are Scheduling Goals?

e What are the goals of a scheduler?

e Linux Scheduler’s Goals:

= Generate illusion of concurrency

« Maximize resource utilization (e.g., mix CPU and
I/O bound processes appropriately)

= Meet needs of both I/O-bound and CPU-bound

processes
= Give I/O-bound processes better interactive response
= Do not starve CPU-bound processes

= Support Real-Time (RT) applications
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Farly Linux Schedulers

« Linux 1.2: circular queue w/ round-robin policy.

= Simple and minimal.
= Did not meet many of the aforementioned goals

« Linux 2.2: introduced scheduling classes (real-
time, non-real-time).

/* Scheduling Policies

*/

#define SCHED OTHER 0 // Normal user tasks (default)
#define SCHED FIFO 1 // RT: Will almost never be preempted
#define SCHED RR 2 // RT: Prioritized RR queues

I

CS 423: Operating Systems Design



‘ Why 2 RT mechanisms!

Two Fundamental Mechanisms...
= Prioritization
= Resource partitioning
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Prioritization

SCHED_FIFO
« Used for real-time processes

« Conventional preemptive fixed-priority

scheduling
= Current process continues to run until it ends or a
higher-priority real-time process becomes runnable

= Same-priority processes are scheduled FIFO
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Partitioning

SCHED_RR
« Used for real-time processes
« CPU “partitioning” among same priority
processes
= Current process continues to run until it

ends or its time quantum expires
= Quantum size determines the CPU share

= Processes of a lower priority run when no
processes of a higher priority are present
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Linux 2.4 Scheduler

= 2.4. O(N) scheduler.
= Epochs — slices: when blocked before the slice
ends, half of the remaining slice is added in the
next epoch.
= Simple.
- Lacked scalability.
= Weak for real-time systems.
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Linux 2.6 Scheduler

= O(1) scheduler

= Tasks are indexed according to their priority
[0,139]
= Real-time [0, 99]
= Non-real-time [100, 139]
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SCHED_NORMAL

« Used for non real-time processes
« Complex heuristic to balance the needs of I/O and CPU centric
applications
= Processes start at 120 by default
= Static priority
= A "nice” value: 19 to -20.
= Inherited from the parent process
= Altered by user (negative values require special permission)
« Dynamic priority
= Based on static priority and applications characteristics
(interactive or CPU-bound)
= Favor interactive applications over CPU-bound ones

= Timeslice is mapped from priority
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= Used for non real-time processes

« Complex heuristic to balance the needs of I/O and CPU centric
applications

Static Priority: Handles assigned task priorities

Dynamic Priority: Favors interactive tasks

ssion
Combined, these mechanisms govern CPU )

access in the SCHED NORMAL scheduler.

(interactive or CPU-bound)
= Favor interactive applications over CPU-bound ones

= Timeslice is mapped from priority
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SCHED NORMAL Heuristic [

How does a static priority translate to real CPU access?

if (static priority < 120)
Quantum = 20 x (140 — static priority)

else
Quantum = 5 x (140 — static priority)

(in ms)

Higher priority > Larger quantum

CS 423: Operating Systems Design



SCHED NORMAL Heuristic [

How does a static priority translate to CPU access?

Description Static Nice Base time
P priority value quantum

Highest static _

priority 100 20 800 ms
High static i

priority 110 10 600 ms
Default static

priority 120 0 100 ms
Low static

priority 130 +10 50 ms
Lowes_t sfcatic 139 +19 5 ms

priority
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SCHED NORMAL Heuristic [

How does a dynamic priority adjust CPU access?

bonus = min (10, (avg. sleep time / 100) ms)

dynamic priority =

avg. sleep time 1s 0 => bonus 1s 0

avg. sleep time 1s 100 ms => bonus 1s 1
avg. sleep time 1s 1000 ms => bonus is 10
avg. sleep time is 1500 ms => bonus is 10

Your bonus increases a leep more.
our bonus increases 5 you siecp more Max priority #is still 139

+

max (100, min (static priority — bonus + 5, 139))

Min priority # is still 100 ‘Bonus is subtracted to increase priorit
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SCHED NORMAL Heuristic [

How does a dynamic priority adjust CPU access?

What's the problem with this (or any) heuristic?

DONUS 1INCreasces as you Siecp more. Max priority # s still 139

dynamic priority = *
max (100, min (static priority — bonus + 5, 139))

Min priority # is still 100 Bonus is subtracted to increase priorit
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Completely Fair Scheduler [

« Goal: Fairly divide a CPU evenly among all competing
processes with a clean implementation

= Merged into the 2.6.23 release of the Linux kernel and is
the default scheduler.

= Created by In?( 0 Molnar in a short burst of creativity which
led to a 100K kernel patch developed in 62 hours.

Basic Idea:

« Virtual Runtime (vruntlme) When a process runs it
accumulates “virtual time.” If priority is high, virtual time
accumulates slowly. If priority is low, virtual time
accumulates quicky

« Itis a “catch up” policy — task with smallest amount of
virtual time gets to run next.
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Completely Fair Scheduler [

= Scheduler maintains a red-black tree where nodes are
ordered according to received virtual execution time

=« Node with smallest virtual received execution time is
picked next

= Priorities determine accumulation rate of virtual

execution time
- Higher priority > slower accumulation rate
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Completely Fair Scheduler [

Y e are
o) Property of CFS: If all task’s virtual clocks run at¥3

exactly the same speed, they will all get the same
o ‘amount of time on the CPU.
Pl

_p How does CFS account for I/0-intensive tasks?

IS

execution time
- Higher priority > slower accumulation rate
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Example I

= Three tasks A, B, C accumulate virtual time
at a rate of 1, 2, and 3, respectively.

« What is the expected share of the CPU that
each gets?

Strategy: How many quantums Q01: A => {A:1, B:0, C:0}
required for all clocks to be equal? (¢02: B => {A:1, B:2, C:0}
e L east common multiple is 6 Q03: C => {A:1, B:2, C:3}

e To reach VT=6... Q04: A => {A:2, B:2, C:3}

e A is scheduled 6 times Q05: B => {A:2, B:4, C:3}

e B is scheduled 3 times Q06: A => {A:3, B:4, C:3}

e Cis scheduled 2 times. Q07: A => {A:4, B:4, C:3}

e 6+3+2 =11 Q08: C => {A:4, B:4, C:6}

e A =>6/11 of CPU time Q09: A => {A:5, B:4, C:6}

e B=>3/11 of CPU time Q10: B => {A:5, B:6, C:6}

e C=>2/11 of CPU time Qll: A => {A:6, B:6, C:6}
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Red-Black Trees

= CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:

1. Each node is red or black

2. Root node is black

3. All leaves (NIL) are black

4. If node is red, both children are black

5. Every path from a given node to its
descendent NIL leaves contains the

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

same humber of black nodes
- Virtual runtime
h Most need of CPU Least need of CPU
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Red-Black Trees

= CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:

1. Each node is red or black

2. Root node is black

3. All leaves (NIL) are black

4. If node is red, both children are black

5. Every path from a given node to its
descendent NIL leaves contains the

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

same humber of black nodes
- Virtual runtime
h Most need of CPU Least need of CPU

Takeaway: In an RB Tree, the path from the root to the farthest leaf is no
more than twice as long as the path from the root to the nearest leaf.
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Red-Black Trees

= CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

Nodes represent
sched_entity(s)
indexed by their
virtual runtime

Benefits over run queue:

e O(1) access to leftmost node
(lowest virtual time).

e O(log n) insert

e O(log n) delete

e self-balancing

Virtual runtime

- Most need of CPU Least need of CPU

CS 423: Operating Systems Design




Account for /O

One problem with picking the lowest vruntime to run next
arises with jobs that have gone to sleep for a long period of
time. Imagine two processes, A and B, one of which (A) runs
continuously, and the other (B) which has gone to sleep for a
long period of time (say, 10 seconds). When B wakes up, its
vruntime will be 10 seconds behind A’s, and thus (if we're not
careful), B will now monopolize the CPU for the next 10
seconds while it catches up, effectively starving A.

What's the solution? ©
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How/when to preempt? [

= Kernel sets the need resched flag (per-process var) at
various locations

= scheduler tick (), a process used up its timeslice

« try to wake up (), higher-priority process awaken

= Kernel checks need resched at certain points, if safe,
schedule () Wwill be invoked

« User preemption
= Return to user space from a system call or an interrupt
handler
= Kernel preemption
= A task in the kernel explicitly calls schedule ()

= A task in the kernel blocks (which results in a call to
schedule () )
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A ) A Note on CPU Affinity

We’'ve had lots of great (abstraction-violating) questions
about how multiprocessor scheduling works in practice...

e To answer, consider CPU Affinity — scheduling a
process to stay on the same CPU as long as possible

e Benefits?

e Soft Affinity — Natural occurs through efficient
scheduling

e Present in O(1) onward, absent in O(N)

e Hard Affinity — Explicit request to scheduler made
through system calls (Linux 2.5+)
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Multi-Processor Scheduling I

e CPU affinity would seem to necessitate a multi-queue
approach to scheduling... but how?

e Asymmetric Multiprocessing (AMP): One processor
(e.g., CPU 0) handles all scheduling decisions and 1/0O
processing, other processes execute only user code.

e Symmetric Multiprocessing (SMP): Each processor is
self-scheduling. Could work with a single queue, but
also works with private queues.

e Potential problems?
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SMP Load Balancing

e SMP systems require load balancing to keep the
workload evenly distributed across all processors.

e Two general approaches:

e Push Migration: Task routinely checks the load on
each processor and redistributes tasks between
processors if imbalance is detected.

e Pull Migration: Idle processor can actively pull
waiting tasks from a busy processor.

CS 423: Operating Systems Design



‘ Other scheduling policies

« What if you want to maximize throughput?
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‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!
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‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

« What if you want to meet all deadlines?

CS 423: Operating Systems Design



‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

« What if you want to meet all deadlines?
= Earliest deadline first!
= Problem?
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‘ Other scheduling policies

« What if you want to maximize throughput?
= Shortest job first!

« What if you want to meet all deadlines?

= Earliest deadline first!

= Problem?

= Works only if you are not “overloaded”. If the total
amount of work is more than capacity, a domino effect
occurs as you always choose the task with the nearest
deadline (that you have the least chance of finishing by
the deadline), so you may miss a lot of deadlines!
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EDF Domino Effect

« Problem:

- It is Monday. You have a homework due tomorrow
(Tuesday), a homework due Wednesday, and a homework
due Thursday

= It takes on average 1.5 days to finish a homework.

= Question: What is your best (scheduling) policy?
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EDF Domino Effect

= Problem:
- It is Monday. You have:
= a homework (A) due tomorrow (Tuesday),
= a homework (B) due Wednesday,
= and a homework (C) due Thursday.
= It takes on average 1.5 days to finish a homework.

= Question: What is your best (scheduling) policy?
= You could instead skip tomorrow’s homework and work on
the next two, finishing them by their deadlines
= Note that EDF is bad: It always forces you to work on the
next deadline, but you have only one day between
deadlines which is not enough to finish a 1.5 day

homework — you might not complete any of the three
homeworks!
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