
CS 423: Operating Systems Design

Tianyin Xu
tyxu@illinois.edu

CS 423
Operating System Design

https://cs423-uiuc.github.io

* Thanks Adam Bates for the slides.

mailto:tyxu@Illinois.edu
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/

CS 423: Operating Systems Design

Scheduling

2

• A forever topic in Computer Systems and Life

• Uniprocessor:100 threads in the ready queue –
which one to run next?

• Multiprocessor: 400 threads in the ready queues of
four cores – which one to run next on which core?

• Cluster: 1000 MapReduce jobs – which one to run
on which machine and on which core?

• Datacenters: 10000 user request – which one to run
on which datacenter on which cluster on which
machine?

CS 423: Operating Systems Design

More complexity

3

• Jobs/requests are not created equal.

• Some are more important than the others

• Jobs/requests could have deadlines

• Finishing late means nothing but wasting resources.

• Jobs/requests have constraints

• Affinity is important – same node and same PCIe
switch for GPUs

• Workloads could be very different.

CS 423: Operating Systems Design

Scheduling

4

• Always an active research topic

• Everyone wants run more jobs with less resources

• In this class, we are going to focus on the simplest
setup – a uniprocessor

CS 423: Operating Systems Design

What Are Scheduling Goals?

5

• What are the goals of a scheduler?

• Scheduling Goals:
■ Generate illusion of concurrency
■ Maximize resource utilization (e.g., mix CPU and

I/O bound processes appropriately)
■ Meet needs of both I/O-bound and CPU-bound

processes
■ Give I/O-bound processes better interactive response
■ Do not starve CPU-bound processes

■ Support Real-Time (RT) applications

CS 423: Operating Systems Design

Definitions

6

• Task/Job

• Something that needs CPU time: a thread associated with a process or
with the kernel…

• … a user request, e.g., mouse click, web request, shell command, …

• Latency/response time

• How long does a task take to complete?

• Throughput

• How many tasks can be done per unit of time?

CS 423: Operating Systems Design

Definitions

7

• Overhead

• How much extra work is done by the scheduler?

• Fairness

• How equal is the performance received by different users?

• Predictability

• How consistent is the performance over time?

• Starvation

• A task ‘never’ receives the resources it needs to complete

• Not very fair : - (

CS 423: Operating Systems Design

Definitions

8

• Workload

• Set of tasks for system to perform

• Work-conserving

• Resource is used whenever there is a task to run

• For non-preemptive schedulers, work-conserving is not always better

CS 423: Operating Systems Design 9

■ Non-preemptive scheduling:
■ The running process keeps the CPU until it voluntarily

gives up the CPU
■ process exits
■ switches to blocked state
■ 1 and 4 only (no 3)

■ Preemptive scheduling:
■ The running process can be interrupted and must release

the CPU (can be forced to give up CPU)

Running Terminated

Ready Blocked

1

4

3

Definitions

CS 423: Operating Systems Design

Definitions

10

• Scheduling algorithm

• takes a workload as input

• decides which tasks to do first

• Performance metric (throughput, latency) as output

• Only preemptive, work-conserving schedulers to be considered

CS 423: Operating Systems Design 11

• Schedule tasks in the order they arrive

• Continue running them until they complete or give up the processor

• On what workloads would FIFO be particularly bad?

First In First Out (FIFO)

CS 423: Operating Systems Design 12

• Always do the task that has the shortest remaining
amount of work to do

• Often called Shortest Remaining Time First (SRTF)

• Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others

• Which completes first in FIFO? Next?

• Which completes first in SJF? Next?

Shortest Job First (SJF)

CS 423: Operating Systems Design

FIFO vs. SJF

13

CS 423: Operating Systems Design 14

• Each task gets resource for a fixed period of time
(time quantum)

• If task doesn’t complete, it goes back in line

• Characteristics of scheduler change depending on the
time quantum size

• What if time quantum is too short?

• One instruction?

• What if time quantum is too long?

• Infinite?

Round Robin (RR)

CS 423: Operating Systems Design

Round Robin

15

CS 423: Operating Systems Design

Round Robin

16

CS 423: Operating Systems Design

Round Robin

17

CS 423: Operating Systems Design

Round Robin

18

CS 423: Operating Systems Design

Scheduling

19

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin

CS 423: Operating Systems Design

Scheduling

20

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin

■ What is an optimal algorithm in the sense
of maximizing the number of jobs finished
(i.e., minimizing average response time)?

CS 423: Operating Systems Design

FIFO vs. SJF

21

wait time for 2,
3, 4, 5 is BIG!

wait time for 2,
3, 4, 5 is SMALL!

CS 423: Operating Systems Design

Scheduling

22

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin

■ Assuming zero-cost to time slicing, is Round
Robin always better than FIFO?

CS 423: Operating Systems Design

RR v. FIFO (fixed size tasks)

23

CS 423: Operating Systems Design

Starvation, Sample Bias

24

• Suppose you want to compare two scheduling
algorithms

• Create some infinite sequence of arriving tasks

• Start measuring

• Stop at some point

• Compute average response time as the average for completed tasks
between start and stop

• Is this valid or invalid?

CS 423: Operating Systems Design

Sample Bias Solutions

25

• Measure for long enough that # of completed tasks >>
of uncompleted tasks

• For both systems!

• Start and stop system in idle periods

• Idle period: no work to do

• If algorithms are work-conserving, both will complete the same tasks

CS 423: Operating Systems Design

Round Robin = Fairness?

26

Is Round Robin the fairest possible algorithm?

What is fair?

• FIFO?

• Equal share of the CPU?

• What if some tasks don’t need their full share?

• Minimize worst case divergence?

• Time task would take if no one else was running

• Time task takes under scheduling algorithm

CS 423: Operating Systems Design

Fairness needs to be defined.

27

• 4 kids share a cake.

• Each gets 25% of the cake.

• Quite fair!

• There is one little kids and the kid can only eat 10% of
the cake.

• We either force her to eat the 25% -- to be fair

• Or we give 15% remaining to the other 3 kids.

• Min-max fairness

CS 423: Operating Systems Design

Max-Min Fairness

28

• The least demanding one will get its fair share first

• After this, the next least demanding one will get its
fair share first

• And so on...

CS 423: Operating Systems Design

Max-Min Fairness

29

• Kid 1: 20%

• Kid 2: 26%

• Kid 3: 40%

• Kid 4: 50%

• 100% -> 25% each kid

• 20% -> 5% left -> 1.666666% to the other three
25%
25%
25%

CS 423: Operating Systems Design

Max-Min Fairness

30

• Kid 1: 20%

• Kid 2: 26%

• Kid 3: 40%

• Kid 4: 50%

• 100% -> 25% each kid

• 20%
26%
27%
27%

CS 423: Operating Systems Design

Max-Min Fairness

31

• How do we balance a mixture of repeating tasks?

• Some I/O bound, need only a little CPU

• Some compute bound, can use as much CPU as they are assigned

• One approach: maximize the minimum allocation given
to a task

• If any task needs less than an equal share, schedule the smallest of
these first

• Split the remaining time using max-min

• If all remaining tasks need at least equal share, split evenly

CS 423: Operating Systems Design

Mixed Workloads??

32

CS 423: Operating Systems Design 34

• Set of Round Robin queues

• Each queue has a separate priority

• High priority queues have short time slices

• Low priority queues have long time slices

• Scheduler picks first thread in highest priority queue

• Tasks start in highest priority queue

• If time slice expires, task drops one level

Multi-Level Feedback Queue

CS 423: Operating Systems Design 33

• Goals:

• Responsiveness

• Low overhead

• Starvation freedom

• Some tasks are high/low priority

• Fairness (among equal priority tasks)

• Not perfect at any of them!

• Used in Linux (and probably Windows, MacOS)

Multi-Level Feedback Queue

CS 423: Operating Systems Design 5

Multi-Level Feedback Queue

CS 423: Operating Systems Design

Why is MLFQ a good design?

6

• How to design a scheduler that both minimizes
response time for interactive jobs while also
minimizing turnaround time without a priori
knowledge of job length?

• Yes, SJF – the assumption is to know which is the
“shortest..”

• It’s just very hard to know in advance.

• Sometimes processes/threads could try to game
(we will see an example).

CS 423: Operating Systems Design

Why is MLFQ a good design?

7

• The Key Idea

• Dynamically adjusting the priority level based on
observing the behavior of the processes/threads

• Basic Design
• When a job enters the system, it is placed at the highest

priority (the topmost queue).

• If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue).

• If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

CS 423: Operating Systems Design

Basic Design

8

Job 1 Job 2

High
priority

Low
priority

time

CS 423: Operating Systems Design

Basic Design

9

• because it doesn’t know whether a job will be a short job or a
long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run
quickly and complete; if it is not a short job, it will slowly move
down the queues, and thus soon prove itself to be a long-
running more batch-like process.

CS 423: Operating Systems Design

Limitations?

10

• Starvation

• A process changing its characteristics

• Gaming the scheduler

CS 423: Operating Systems Design

Priority Boost

11

• After some time period S, move all the jobs in the
system to the topmost queue

CS 423: Operating Systems Design

Better Accounting

12

• Once a job uses up its time allotment at a given level
(regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

CS 423: Operating Systems Design

Sounds perfect?

13

• How many queues should there be?

• How big should the time slice be per queue?

• How often should priority be boosted in order to
avoid starvation and account for changes in behavior?

CS 423: Operating Systems Design

Summary

36

• FIFO is simple and minimizes overhead.

• If tasks are variable in size, then FIFO can have very
poor average response time.

• If tasks are equal in size, FIFO is optimal in terms of
average response time.

• Considering only the processor, SJF is optimal in terms
of average response time.

• SJF is pessimal in terms of variance in response time.

CS 423: Operating Systems Design

Summary

37

• If tasks are variable in size, Round Robin approximates
SJF.

• If tasks are equal in size, Round Robin will have very
poor average response time.

• Tasks that intermix processor and I/O benefit from SJF
and can do poorly under Round Robin.

CS 423: Operating Systems Design

Summary

38

• Max-Min fairness can improve response time for I/O-
bound tasks.

• Round Robin and Max-Min fairness both avoid
starvation.

• By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

• Is MFQ optimally fair??

