CS 423

Operating System Design
https://cs423-uiuc.github.io

Tianyin Xu
tyxu@illinois.edu

* Thanks Adam Bates for the slides.

CS 423: Operating Systems Design

mailto:tyxu@Illinois.edu
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/
https://cs423-uiuc.github.io/

Scheduling

« A forever topic in Computer Systems and Life

« Uniprocessor:100 threads in the ready queue —
which one to run next!

« Multiprocessor: 400 threads in the ready queues of
four cores — which one to run next on which core?

« Cluster: 1000 MapReduce jobs — which one to run
on which machine and on which core?

« Datacenters: 10000 user request — which one to run

on which datacenter on which cluster on which
machine?

CS 423: Operating Systems Design

More complexity

 Jobs/requests are not created equal.

« Some are more important than the others
 Jobs/requests could have deadlines

* Finishing late means nothing but wasting resources.
 Jobs/requests have constraints

« Affinity is important — same node and same PCle
switch for GPUs

* Workloads could be very different.

CS 423: Operating Systems Design

Scheduling

« Always an active research topic

« Everyone wants run more jobs with less resources

* In this class, we are going to focus on the simplest
setup — a uniprocessor

CS 423: Operating Systems Design

What Are Scheduling Goals? ' 1

IILOVE'SETTING GOALS!

* What are the goals of a scheduler?

* Scheduling Goals:

« Generate illusion of concurrency

= Maximize resource utilization (e.g., mix CPU and
I/O bound processes appropriately)

=« Meet needs of both I/O-bound and CPU-bound

Drocesses
= Give I/O-bound processes better interactive response
= Do not starve CPU-bound processes

« Support Real-Time (RT) applications

CS 423: Operating Systems Design

Definrtions

« Task/Job

« Something that needs CPU time: a thread associated with a process or
with the kernel...

e ... auser request, e.g., mouse click, web request, shell commang, ...

 Latency/response time

* How long does a task take to complete!?

* Throughput

« How many tasks can be done per unit of time!?

CS 423: Operating Systems Design

Definrtions

« Overhead

« How much extra work is done by the scheduler?

 Fairness

* How equal is the performance received by different users!?

 Predictability

* How consistent is the performance over time!?

e Starvation

« A task ‘never’ receives the resources it needs to complete

* Not very fair : - (

CS 423: Operating Systems Design

Definrtions

« Workload

« Set of tasks for system to perform

* Work-conserving

« Resource is used whenever there is a task to run

« For non-preemptive schedulers, work-conserving is not always better

CS 423: Operating Systems Design

Definrtions

= Non-preemptive scheduling:
= The running process keeps the CPU until it voluntarily
gives up the CPU

. process exits

= Switches to blocked state
. 1 and 4 only (no 3)

« Preemptive scheduling:

= The running process can be interrupted and must release
the CPU (can be forced to give up CPU)

CS 423: Operating Systems Design

Definrtions

 Scheduling algorithm

 takes a workload as input
 decides which tasks to do first
» Performance metric (throughput, latency) as output

« Only preemptive, work-conserving schedulers to be considered

CS 423: Operating Systems Design

First In First Out (FIFO) |

« Schedule tasks in the order they arrive

« Continue running them until they complete or give up the processor

« On what workloads would FIFO be particularly bad?

CS 423: Operating Systems Design

Shortest Job First (S)F)

« Always do the task that has the shortest remaining
amount of work to do

« Often called Shortest Remaining Time First (SRTF)

« Suppose we have five tasks arrive one right after each
other, but the first one is much longer than the others

* Which completes first in FIFO? Next?

* Which completes first in SJF? Next!

CS 423: Operating Systems Design

FIFO vs. S|F

Tasks FIFO
(1)
(2)
(3)
(4)
(5)

Tasks SJF
(1)
(2)
(3)
(4)
(5)

Time

CS 423: Operating Systems Design

Round Robin (RR)

 Each task gets resource for a fixed period of time
(time quantum)

 If task doesn’t complete, it goes back in line

« Characteristics of scheduler change depending on the
time quantum size

* What if time quantum is too short?
* One instruction!
* What if time quantum is too long?

e Infinite!?

CS 423: Operating Systems Design

Round Robin

Tasks Round Robin (100 ms time slice)

(1) Rest of Task 1
(2)
(3)
(4)
(5)

Time

CS 423: Operating Systems Design

Round Robin

Tasks Round Robin (100 ms time slice)

Rest of Task 1

CS 423: Operating Systems Design

Round Robin

Tasks Round Robin (1 ms time slice)

(1) Rest of Task 1
(2)
(3)
(4)
(5)

CS 423: Operating Systems Design

Round Robin

Tasks Round Robin (1 ms time slice)

Rest of Task 1

SJF

Time

CS 423: Operating Systems Design

Scheduling

= Basic scheduling algorithms
. FIFO (FCFS)
= Shortest job first
= Round Robin

CS 423: Operating Systems Design

Scheduling

= Basic scheduling algorithms
. FIFO (FCFS)
= Shortest job first
= Round Robin

= What is an optimal algorithm in the sense
of maximizing the number of jobs finished
(i.e., minimizing average response time)?

CS 423: Operating Systems Design

FIFO vs. S|F

Tasks FIFO wait time for 2,

3, 4,5 is BIG!

Tasks SJF

wait time for 2,
3,4,5is SMALL'

Time

CS 423: Operating Systems Design

Scheduling

= Basic scheduling algorithms
. FIFO (FCFS)
= Shortest job first
= Round Robin

= Assuming zero-cost to time slicing, is Round
Robin always better than FIFO?

CS 423: Operating Systems Design

RR v. FIFO (fixed size tasks) I

Tasks Round Robin (1 ms time slice)

Tasks FIFO and SJF

Time

CS 423: Operating Systems Design

Starvation, Sample Bias |

« Suppose you want to compare two scheduling
algorithms

« Create some infinite sequence of arriving tasks
 Start measuring
« Stop at some point

« Compute average response time as the average for completed tasks
between start and stop

e |s this valid or invalid?

CS 423: Operating Systems Design

Sample Bias Solutions I

« Measure for long enough that # of completed tasks >>
of uncompleted tasks

* For both systems!

« Start and stop system in idle periods

* ldle period: no work to do

« If algorithms are work-conserving, both will complete the same tasks

CS 423: Operating Systems Design

Round Robin = Fairness? 1

Is Round Robin the fairest possible algorithm?

What is fair?
« FIFO?
« Equal share of the CPU!?
* What if some tasks don’t need their full share!?
« Minimize worst case divergence!
« Time task would take if no one else was running

« Time task takes under scheduling algorithm

CS 423: Operating Systems Design

Falrness needs to be defined.][

* 4 kids share a cake.
* Each gets 25% of the cake.

e Quite fair!

* There is one little kids and the kid can only eat 10% of
the cake.

* We either force her to eat the 25% -- to be fair
* Or we give |5% remaining to the other 3 kids.

e Min-max fairness

CS 423: Operating Systems Design

Max-Min Fairness [

® The least demanding one will get its fair share first

® After this, the next least demanding one will get its
fair share first

® Andsoon...

CS 423: Operating Systems Design

Max-Min Fairness
® Kid 1: 20%
® Kid 2: 26%
® Kid 3: 40%
® Kid 4: 50%

® 100% -> 25% each kid

® 20% -> 5% left -> 1.666666% to the other three
25%
25%
25%

CS 423: Operating Systems Design

Max-Min Fairness
® Kid 1: 20%
® Kid 2: 26%
® Kid 3: 40%
® Kid 4: 50%

® 100% -> 25% each kid
e ono
26%

27%
27%

CS 423: Operating Systems Design

Max-Min Fairness

* How do we balance a mixture of repeating tasks!?

« Some I/O bound, need only a little CPU
« Some compute bound, can use as much CPU as they are assigned

« One approach: maximize the minimum allocation given
to a task

 If any task needs less than an equal share, schedule the smallest of
these first

« Split the remaining time using max-min

« If all remaining tasks need at least equal share, split evenly

CS 423: Operating Systems Design

Mixed Workloads!!

Tasks
/0 Bound
Issues 1/0 Issues 170
/0 Completes /0 Completes
Request Request
CPU Bound
CPU Bound
>
Time

CS 423: Operating Systems Design

Multi-Level Feedback Queue [

 Set of Round Robin queues

« Each queue has a separate priority

* High priority queues have short time slices

* Low priority queues have long time slices

 Scheduler picks first thread in highest priority queue

« Tasks start in highest priority queue

« If time slice expires, task drops one level

CS 423: Operating Systems Design

Multi-Level Feedback Queue [

« Goals:

« Responsiveness

« Low overhead

 Starvation freedom

« Some tasks are high/low priority

 Fairness (among equal priority tasks)

* Not perfect at any of them!
e Used in Linux (and probably Windows, MacOS)

CS 423: Operating Systems Design

Multi-Level Feedback Queue [

Priority Time Slice (ms) Round Robin Queues
1 10 —]
2 3 T ;,Eﬁast:,oc:
. 0 T .
4 e

CS 423: Operating Systems Design 5

B Why is MLFQ a good design?

e How to desigh a scheduler that both minimizes
response time for interactive jobs while also
minimizing turnaround time without a priori
knowledge of job length?

e Yes, SJF —the assumption is to know which is the
“shortest..”

e It's just very hard to know in advance.

e Sometimes processes/threads could try to game
(we will see an example).

CS 423: Operating Systems Design

B Why is MLFQ a good design?

e The Key Idea

 Dynamically adjusting the priority level based on
observing the behavior of the processes/threads

e Basic Design

e When a job enters the system, it is placed at the highest
priority (the topmost queue).

e |f a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue).

e |f a job gives up the CPU before the time slice is up, it stays
at the same priority level.

CS 423: Operating Systems Design 7

Basic Design

/JOb 1 /JOb 2
High

Q2
priority @2 I

Q1 Q1 I

Low
priority Qo

0 - 50 100 150 200 0 50 100 150 200
time

CS 423: Operating Systems Design

0 50 100 150 200

e because it doesn’t know whether a job will be a short job or a
long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run
quickly and complete; if it is not a short job, it will slowly move
down the queues, and thus soon prove itself to be a long-
running more batch-like process.

CS 423: Operating Systems Design

| imitations?

e Starvation
e A process changing its characteristics

e Gaming the scheduler

Q1 Q1 I
) -HHHHHH\HH-
0 50 100 150 200 100 150 200 250 300

CS 423: Operating Systems Design

Priority Boost

e After some time period S, move all the jobs in the
system to the topmost queue

i _ [111
Q1 Q1
| I .
QO QO
. N .

CS 423: Operating Systems Design

Better Accounting [(

e Once a job uses up its time allotment at a given level
(regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
gueue).

N N
T e T

0 50 100 150 200 250 300 0 50 100 150 200 250 300

CS 423: Operating Systems Design

Sounds perfect?

e How many queues should there be?
e How big should the time slice be per queue?

e How often should priority be boosted in order to
avoid starvation and account for changes in behavior?

CS 423: Operating Systems Design

* FIFO is simple and minimizes overhead.

« If tasks are variable in size, then FIFO can have very
pooOr average response time.

« |f tasks are equal in size, FIFO is optimal in terms of
average response time.

« Considering only the processor, SJF is optimal in terms
of average response time.

« SJF is pessimal in terms of variance in response time.

CS 423: Operating Systems Design

Summary I

» If tasks are variable in size, Round Robin approximates
SJF.

« |f tasks are equal in size, Round Robin will have very
poor average response time.

« Tasks that intermix processor and I/O benefit from SJF
and can do poorly under Round Robin.

CS 423: Operating Systems Design

Summary I

« Max-Min fairness can improve response time for |/O-
bound tasks.

« Round Robin and Max-Min fairness both avoid
starvation.

« By manipulating the assignment of tasks to priority
queues, an MFQ scheduler can achieve a balance
between responsiveness, low overhead, and fairness.

 Is MFQ optimally fair??

CS 423: Operating Systems Design

