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Top Secret
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Translation Overhead is High
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4 or more sequential walk accesses for one translation

Caches cannot scale with memory capacity

Sequential walk takes time (~20% in upper levels for Redis)



Our Work

Problem: 4 sequential walk accesses
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Our Work

Problem: 4 sequential walk accesses

Solution: Directly fetching the last-level PTEs
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From Conventional Radix Table
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• Only L1 directly maps pages

Only L1 Directly Maps 4 KiB Pages
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L1 maps pages
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L4-L2 are Skippable
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

L1 maps pages

L4-L2 maps
page tables

L1



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

Directly Fetching L1 PTE
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

Physically Contiguous L1 for Direct Indexing
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

32 PiB Memory Space Consumption?
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16 EiB ÷ 4 KiB/Page × 8 Bytes/PTE = 32 PiB/Addr. Space



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes

Not All Addresses are Mappable
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes

Not All Addresses are Mappable or Used
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Cluster and split for manageability

Cluster For Less Roots
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Cluster and split for manageability

Split When Low Contiguity
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Cluster and split for manageability

• 16 contig. L1s can map 99% of memory

16 Roots are Enough
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Only a handful of Virtual Memory Areas (VMA) are of significant size and are frequently accessed.

We can further cluster VMAs with small bubbles (<2% waste) to cover 99% of total working set.



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Only a few VMAs are significant

• 16 contig. L1s can map 99% of memory

• Radix-compatibility makes DMT practical
• Can seamlessly switch between Radix and DMT

DMT is Radix Compatible
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• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Only a few VMAs are significant

• 16 contig. L1s can map 99% of memory

• Radix-compatibility makes DMT practical
• Can seamlessly switch between Radix and DMT

• Supports huge page via parallel walks

DMT Supports Huge Pages
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DMT requires minimal hardware support
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DMT exposes TEA registers in the Instruction Set Architecture (ISA)
DMT adds a page walker side-by-side with the existing one in the Microarchitecture
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(RAX, R10, etc.)



DMT requires minimal hardware support
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DMT exposes TEA registers in the Instruction Set Architecture (ISA)
DMT adds a PTE fetcher side-by-side with the existing one in the Microarchitecture
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Summary of Evaluation Results
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• DMT speeds up page walk by an average of 1.28x over vanilla x86.

• DMT speeds up application execution by an average of 1.05x.



• DMT is a SW-HW extension that shortcuts page table walks
• Native: 4 (x86-64) → 1 (DMT)

• DMT directly fetches the last-level page table entries (PTEs)
• Fully compatible with existing radix page table design (e.g., x86 and ARM)

• Flexible and scalable for OS and HW implementation

• Artifact available at: https://github.com/xlab-uiuc/dmt

Conclusion
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