Direct Memory Translation
for Virtualized Clouds

Jiyuan Zhang, Weiwei Jia, Siyuan Chai,
Peizhe Liu, Jongyul Kim, and Tianyin Xu

UNIVERSITY OF

ILLINOIS

AAAAAA -CHAMPAIGN

) Top Secret

7. Fast Memory Translation

Jiyuan is working on accelerating page walk latency with his 128-bit design. He realizes that
sequentially chasing the multi-level radix tree is too expensive. So he remembered the linear
page table Tianyin mentioned in the class — “If the page table is a flat array indexed by the
virtual page number, then we only need one memory access to fetch the translation in the
array.” However, as we know, the linear page table is not space efficient.

With the lazy evaluation principle, Jiyuan designs a new on-demand linear page table for only
“in-use” virtual address regions.|If a virtual address is not used, why bother reserving spaces for
PTEs of that address. He took a look at /proc/<pid>/maps, and found that most programs
only used a small portion of their address space, and the regions in-use seemed mostly
contiguous and are only around one hundred of them.

So, he designed a new architecture that creates a small linear page table for each of those
in-use address regions.

Another TA, Siyuan, thinks this idea is over complicated - why bother checking which address
region is in use - if we use a hash table to maintain page table entries, we can still have a flat,
single access page table.

What are the pros and cons of the on-demand linear page table versus hashed page table?
Please provide justifications for your answer by comparing the two designs.

) Translation Overhead is High

4 or more sequential walk accesses for one translation
Caches cannot scale with memory capacity

Sequential walk takes time (~20% in upper levels for Redis)

) Our Work

Problem: 4 sequential walk accesses

) Our Work

Problem: 4 sequential walk accesses

Solution: Directly fetching the last-level PTEs

) From Conventional Radix Table

Root ——

g Page

) Only L, Directly Maps 4 KiB Pages

« Only L, directly maps pages L LRI

g Page

Root — - .

L, maps pages

) L.-L, are Skippable

« Only L, directly maps pages o m - ~
* Modern CPU already skips L,-L,

A 4

Page

L,-L, maps J N
Root page tables

L, maps pages

—— e = - —

p Directly Fetching L, PTE

« Only L, directly maps pages ;T T T ~

* Modern CPU already skips L,-L,
« Directly fetch L, to reduce cost

Root —

o mm e e

— o = = —

A 4

Page

) Physically Contiguous L, for Direct Indexing

« Only L, directly maps pages
 Modern CPU already skips L,-L, S h

« Directly fetch L, to reduce cost

» Use physically contiguous L, Page

\

|

|

|

|

|

. . Lo |
Can be direct indexed Root , :
|

|

|

|

|

|

|

o mm mm mm oEm =

) 32 PiB Memory Space Consumption?

« Only L, directly maps pages
* Modern CPU already skips L,-L,

« Directly fetch L, to reduce cost

A\ 4

+0

A 4

» Use physically contiguous L, Page

« Can be direct indexed Root ——

¢« Huge memory consumption

16 EiB + 4 KiB/Page x 8 Bytes/PTE = 32 PiB/Addr. Space

) Not All Addresses are Mappable

>

« Only L, directly maps pages
* Modern CPU already skips L,-L,

» Directly fetch L, to reduce cost

FP—————— - = ——

« Use physically contiguous L, Roots

»

Ly

User

 Can be direct indexed

« Huge memory consumption

Do not map memory holes

o wmm o

A 4

Kernel

A 4

Page

\
'Unused (16776960 TiB) |

- - - - - —

J

\ J
T

User Space (128 TiB)

User| User Shared User .
Code| Heap Besauicas M Siae Non-canonical Addresses (Unused)

Physical Kernel
Memory Code & Data

T

Kernel Space (128 TiB)

) Not All Addresses are Mappable or Used

« Only L, directly maps pages e
« Modern CPU already skips L,-L, — | eap2
» Directly fetch L, to reduce cost . "TPage
e
. Use physically contiguous L, Roots . el
« Can be direct indexed
« Huge memory consumption
> Kernel N
Do not map memory holes
Heaps (0-10 TiB)
L -L _______ = J-\
=] | = [. - ——
— o —— o
Code (0-100 MiB) Shared (0-1GiB) Stack (0-8 MiB)

) Cluster For Less Roots

« Only L, directly maps pages T [codetHeap182&3
* Modern CPU already skips L,-L,
« Directly fetch L, to reduce cost

,__________
A 4

Page

« Use physically contiguous L, Roots

A 4

Kernel 1
e Can be direct indexed

« Huge memory consumption

A 4

Kernel N

Do not map memory holes

* Cluster and split for manageability

Heaps (0-10 TiB)

s \
User User User user || Shared User .
Code Heap 1 Heap 2 Heap 3| Resources Stac
__________________ 7
Code (0-100 MiB) Shared (0-1GiB) Stack (0-8 MiB)

) Split When Low Contiguity

« Only L, directly maps pages [[coderHeap!
« Modern CPU already skips L,-L, — | Heap283
* Directly fetch L, to reduce cost . "TPage
e
. Use physically contiguous L, Roots . el
« Can be direct indexed
« Huge memory consumption
> Kernel N
Do not map memory holes

« Cluster and split for manageability
Heaps (0-10 TiB)

—— el - e e e o o e o= - - 1

\ 3 LY
T 1

User User || User User Shared User .
Code Heapl |, : Heap 2 Heap 3|, Resources Stac
Code (0-100 MiB) Shared (0-1GiB) Stack (0-8 MiB)

) 16 Roots are Enough

« Only L, directly maps pages [[coderHeap!
* Modern CPU already skips L,-L,

« Directly fetch L, to reduce cost

q B |—|eap2&3‘

»

Page

+ Use physically contiguous L, Roots

A 4

Kernel 1
e Can be direct indexed

¢« Huge memory consumption

A 4

Kernel N

Do not map memory holes

« Cluster and split for manageability
+ 16 contig. L,s can map 99% of memory

) DMT is Radix Compatible

Only L, directly maps pages

* Modern CPU already skips L,-L, Il One of DMT Roots

|
|
« Directly fetch L, toreducecost = TTTTTTT--o-o- ’

Use physically contiguous L,

 Can be direct indexed

A 4

A

Page

« Huge memory consumption

Radix Root+ L :
Do not map memory holes -

* Only a few VMAs are significant

A 4

* 16 contig. ;s can map 99% of memory

Huge
Page

Radix-compatibility makes DMT practical

« Can seamlessly switch between Radix and DMT

) DMT Supports Huge Pages

Only L, directly maps pages
* Modern CPU already skips L,-L, One of DMT Roots >

« Directly fetch L, to reduce cost

o o e o o - o -

: One of DMT Roots :

« Use physically contiguous L, --- - |
« Can be direct indexed I_O_n_e_o_f Pl\/_l_T_R_O?ES_TLV ‘
« Huge memory consumption s ’ L2 , |Page
Do not map memory holes ’
 Only a few VMAs are significant
* 16 contig. L4/s can map 99% of memory "THuge
Page

Radix-compatibility makes DMT practical

« Can seamlessly switch between Radix and DMT

« Supports huge page via parallel walks

) DMT requires minimal hardware support

ISA

/” TEA Registers)
4 VMA Base R
VMA Length

TEA Root) /

\l'a

o
Radix Roots

(CR3, MTRR, etc.)
_ J

()
General Registers

(RAX, RI10, etc.)

. J

DMT exposes in the Instruction Set Architecture (ISA)

) DMT requires minimal hardware support

ISA

/” TEA Registers)

P

S

/

VMA Base)

VMA Length

TEA Root) /

\l'a

Radix Roots

~

(CR3, MTRR, etc.)
_ J

r

General Registers

~N

(RAX, RI10, etc.)
_ J

DMT exposes

DMT adds a

in the Instruction Set Architecture (ISA)

MMU
TLB
TLB miss
(A 4 A 4
Radix Page DMT
Walker Fetcher
J J
1
PWC
PTE
PWC| hit [data
miss, > !
Memory
Hierarchy

side-by-side with the existing one in the Microarchitecture

) Summary of Evaluation Results

« DMT speeds up page walk by an average of 1.28x over vanilla x86.

« DMT speeds up application execution by an average of 1.05x.

) Conclusion

« DMT is a SW-HW extension that shortcuts page table walks
« Native: 4 (x86-64) » 1 (DMT)

« DMT directly fetches the last-level page table entries (PTES)
« Fully compatible with existing radix page table design (e.g., x86 and ARM)
« Flexible and scalable for OS and HW implementation

« Artifact available at: https://github.com/xlab-uiuc/dmt

