
Direct Memory Translation
for Virtualized Clouds

Jiyuan Zhang, Weiwei Jia, Siyuan Chai,
Peizhe Liu, Jongyul Kim, and Tianyin Xu



Top Secret

1



Translation Overhead is High

2

Root
L4 L3 L2 L1 Page

4 or more sequential walk accesses for one translation

Caches cannot scale with memory capacity

Sequential walk takes time (~20% in upper levels for Redis)



Our Work

Problem: 4 sequential walk accesses

7



Our Work

Problem: 4 sequential walk accesses

Solution: Directly fetching the last-level PTEs

8



From Conventional Radix Table

11

Root
L4 L3 L2 L1 Page



• Only L1 directly maps pages

Only L1 Directly Maps 4 KiB Pages

12

Root
L4 L3 L2 Page

L1 maps pages

L1



L4-L2 are Skippable

13

Root
L4 L3 L2 Page

• Only L1 directly maps pages
• Modern CPU already skips L4-L2

L1 maps pages

L4-L2 maps
page tables

L1



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

Directly Fetching L1 PTE

14

Root

PageL1



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

Physically Contiguous L1 for Direct Indexing

15

Root

Page

L1
+0

+16EiB



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

32 PiB Memory Space Consumption?

16

Root

Page

L1
+0

+16EiB

16 EiB ÷ 4 KiB/Page × 8 Bytes/PTE = 32 PiB/Addr. Space



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes

Not All Addresses are Mappable

17

Roots

Page

L1
User

User
Heap

User
Code

User
Stack Non-canonical Addresses (Unused)Shared

Resources

User Space (128 TiB) Kernel Space (128 TiB)

Kernel
Code & Data

Physical
Memory

Unused (16776960 TiB)

Kernel



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes

Not All Addresses are Mappable or Used

18

Roots

Page

User
Heap 1

User
Code

User
Stack Non-canonical Addresses (Unused)

Code (0-100 MiB)

Heaps (0-10 TiB)

Shared
Resources

Shared (0-1 GiB) Stack (0-8 MiB)

L1

Kernel 1

Code

Heap 2

⋮

User
Heap 2

User
Heap 3

⋮

⋮
Kernel N



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Cluster and split for manageability

Cluster For Less Roots

19

Roots

Page

User
Heap 1

User
Code

User
Stack Non-canonical Addresses (Unused)

Code (0-100 MiB)

Heaps (0-10 TiB)

Shared
Resources

Shared (0-1 GiB) Stack (0-8 MiB)

L1

Kernel 1

Code+Heap 1 & 2 & 3

⋮

User
Heap 2

User
Heap 3

⋮
Kernel N



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Cluster and split for manageability

Split When Low Contiguity

20

Roots

Page

User
Heap 1

User
Code

User
Stack Non-canonical Addresses (Unused)

Code (0-100 MiB)

Heaps (0-10 TiB)

Shared
Resources

Shared (0-1 GiB) Stack (0-8 MiB)

Kernel 1

Code+Heap 1

⋮

User
Heap 2

User
Heap 3

⋮
Kernel N

L1

⋮
Heap 2 & 3



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Cluster and split for manageability

• 16 contig. L1s can map 99% of memory

16 Roots are Enough

21

Roots

Page
L1

Kernel 1

Code+Heap 1

Heap 2 & 3

⋮

⋮

⋮
Kernel N

Only a handful of Virtual Memory Areas (VMA) are of significant size and are frequently accessed.

We can further cluster VMAs with small bubbles (<2% waste) to cover 99% of total working set.



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Only a few VMAs are significant

• 16 contig. L1s can map 99% of memory

• Radix-compatibility makes DMT practical
• Can seamlessly switch between Radix and DMT

DMT is Radix Compatible

22

One of DMT Roots

Page

⋮

L1

Radix Root
L4 L3 L2

Huge
Page



• Only L1 directly maps pages
• Modern CPU already skips L4-L2

• Directly fetch L1 to reduce cost

• Use physically contiguous L1

• Can be direct indexed

• Huge memory consumption

• Do not map memory holes
• Only a few VMAs are significant

• 16 contig. L1s can map 99% of memory

• Radix-compatibility makes DMT practical
• Can seamlessly switch between Radix and DMT

• Supports huge page via parallel walks

DMT Supports Huge Pages

23

One of DMT Roots

Page

L1

Radix Root
L4 L3 L2

One of DMT Roots

One of DMT Roots

Huge
Page

⋮

⋮⋮



DMT requires minimal hardware support

44

DMT exposes TEA registers in the Instruction Set Architecture (ISA)
DMT adds a page walker side-by-side with the existing one in the Microarchitecture

VMA Base

VMA Length

TEA Root

TEA Registers

ISA

Radix Roots
(CR3, MTRR, etc.)

General Registers
(RAX, R10, etc.)



DMT requires minimal hardware support

45

DMT exposes TEA registers in the Instruction Set Architecture (ISA)
DMT adds a PTE fetcher side-by-side with the existing one in the Microarchitecture

TLB

PWC

Memory
Hierarchy

Radix Page
Walker

PWC
miss

hit

DMT
Fetcher

TLB miss

PTE
data

MMU

VMA Base

VMA Length

TEA Root

TEA Registers

ISA

Radix Roots
(CR3, MTRR, etc.)

General Registers
(RAX, R10, etc.)



Summary of Evaluation Results

46

• DMT speeds up page walk by an average of 1.28x over vanilla x86.

• DMT speeds up application execution by an average of 1.05x.



• DMT is a SW-HW extension that shortcuts page table walks
• Native: 4 (x86-64) → 1 (DMT)

• DMT directly fetches the last-level page table entries (PTEs)
• Fully compatible with existing radix page table design (e.g., x86 and ARM)

• Flexible and scalable for OS and HW implementation

• Artifact available at: https://github.com/xlab-uiuc/dmt

Conclusion

47


