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) Top Secret

7. Fast Memory Translation

Jiyuan is working on accelerating page walk latency with his 128-bit design. He realizes that
sequentially chasing the multi-level radix tree is too expensive. So he remembered the linear
page table Tianyin mentioned in the class — “If the page table is a flat array indexed by the
virtual page number, then we only need one memory access to fetch the translation in the
array.” However, as we know, the linear page table is not space efficient.

With the lazy evaluation principle, Jiyuan designs a new on-demand linear page table for only
“in-use” virtual address regions.|If a virtual address is not used, why bother reserving spaces for
PTEs of that address. He took a look at /proc/<pid>/maps, and found that most programs
only used a small portion of their address space, and the regions in-use seemed mostly
contiguous and are only around one hundred of them.

So, he designed a new architecture that creates a small linear page table for each of those
in-use address regions.

Another TA, Siyuan, thinks this idea is over complicated - why bother checking which address
region is in use - if we use a hash table to maintain page table entries, we can still have a flat,
single access page table.

What are the pros and cons of the on-demand linear page table versus hashed page table?
Please provide justifications for your answer by comparing the two designs.




) Translation Overhead is High

4 or more sequential walk accesses for one translation
Caches cannot scale with memory capacity

Sequential walk takes time (~20% in upper levels for Redis)




) Our Work

Problem: 4 sequential walk accesses




) Our Work

Problem: 4 sequential walk accesses

Solution: Directly fetching the last-level PTEs




) From Conventional Radix Table
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p Directly Fetching L, PTE
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) Physically Contiguous L, for Direct Indexing
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) 32 PiB Memory Space Consumption?
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) Not All Addresses are Mappable
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) Not All Addresses are Mappable or Used

« Only L, directly maps pages e
« Modern CPU already skips L,-L, — | eap2
» Directly fetch L, to reduce cost . "TPage
e
. Use physically contiguous L, Roots . el
« Can be direct indexed
« Huge memory consumption
> Kernel N
Do not map memory holes
Heaps (0-10 TiB)
L -L _______ = J-\
=] | = [ . - ——
— o —— o
Code (0-100 MiB) Shared (0-1GiB) Stack (0-8 MiB)



) Cluster For Less Roots
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) Split When Low Contiguity
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) 16 Roots are Enough
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) DMT is Radix Compatible
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) DMT Supports Huge Pages
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) DMT requires minimal hardware support
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) Summary of Evaluation Results

« DMT speeds up page walk by an average of 1.28x over vanilla x86.

« DMT speeds up application execution by an average of 1.05x.




) Conclusion

« DMT is a SW-HW extension that shortcuts page table walks
« Native: 4 (x86-64) » 1 (DMT)

« DMT directly fetches the last-level page table entries (PTES)
« Fully compatible with existing radix page table design (e.g., x86 and ARM)
« Flexible and scalable for OS and HW implementation

« Artifact available at: https://github.com/xlab-uiuc/dmt




