CS 423
Operating System Design:
Adv Storage 2

Ram Alagappan

Acks: Prof. Tianyin Xu and
Prof. Shivaram Venkataraman (Wisconsin) for the slides.

CS 423: Operating Systems Design

Logistics and Recap

Final exam details

Recap:

Solutions for crash consistency: FSCK and
journaling

Today’s lecture: LFS and NFS

CS 423: Operating Systems Design

Log Structured FS

Motivation:
. Sequential speed is much higher than random —
all writes must be sequential ideally

. Memory sizes are growing — write performance
matters the most, can also buffer more

CS 423: Operating Systems Design

Goal

Make all writes sequential

D
AO
B B
b[0]:A0
D |
A0

CS 423: Operating Systems Design

Buffering and Segments |

Buffer and write in large chunks
Called a segment

DIOJ:AD b[0]:A5
Dio| Dj1| Dj2| Dj3|bl2l:A2| Dkpo
b[3]:A3
AOQ A1 A2 A3 Inode | A5 Inode k

CS 423: Operating Systems Design

Finding an Inode

How VSFS (or most UNIX FS) does this!?

LFS: what’s the problem?

CS 423: Operating Systems Design

Finding an Inode

LFS uses a new structure called imap
Imap: take inode as input give disk address
Where should imap be!?

Memory! Fixed location on disk?

— |

b[0]:A0 [m[K]:A1
D | Ik |imap

AO Al

CS 423: Operating Systems Design

How to Find IMAP!?

If in the log, how to find it!

“imap b[0J:A0 | mIKIA
[k...i(—;N]:l D I[k] | imap
CR
0 AO A A2

CS 423: Operating Systems Design

Reading a File

Assume nothing in memory
What are the steps?

CS 423: Operating Systems Design

Directories

Creating a file foo in a directory and appending a

block to it

— — |

b[0]:A0
I[K]

(foo, k)
I:)dir

b[0]:A2
|[dir]

m[k]:A1
m[dir:A3

imap

CS 423: Operating Systems Design

A2

A3

Garbage Collection

b[0]:A0
I[K]

AO (garbage) A4

b[0]:A4
DO | I[K]

The problem!?
The opportunity!?

CS 423: Operating Systems Design

Cleaning

See which blocks are live within a segment
Write live blocks into a new segment, reuse the old

segment

Segment summary block (for every data block, store
its inode number and block offset)

b[0]:A0
D | IK]

m[k]:A1
imap

A0 A1l

(N, T) = SegmentSummary[A];
inode = Read(imap[N]);
if (inode[T] == A)

// block D is alive
else

// block D is garbage

CS 423: Operating Systems Design

NFS Distributed File System

NFS: more of a protocol than a particular file system

Many companies have implemented NFS: Oracle/Sun, NetApp,
EMC, IBM

NFS Arch

Client Client
% y
File
Server
Local FS *
Client RPC } RPC Client

—

Benefits?

Sharing across machines

Central admin

Goal: Simple Server Crash Recovery

Why do servers crash!?

Goal: Simple Crash Recovery

Strategy- |: server returns fd upon open, client passes fd on each
call

int fd= open(“foo”, O RDONLY);
read(fd, buf, MAX);

read(fd, buf, MAX);

read(fd, buf, MAX);

Goal: Simple Crash Recovery

Strategy- |: server returns fd upon open, client passes fd on each
call

int fd= open(“foo”, O RDONLY);
read(fd, buf, MAX);
read(fd, buf, MAX); Server crash!

read(fd, buf, MAX);

Problems

Complicates crash recovery.Why!

Server crash — what happens? What must client do?

General idea: Statelessness

Server keeps no state: no fd [file map, no file position pointer

Server doesn’t keep any state about a client

Client passes all info needed in each call to server

Advantage:

no special crash recovery - the server just starts running again

client might have to retry a request

Pass all info — option-|

Stateless protocol: server maintains no state about clients

Need APl change. One
possibility:
read(char *path, buf, size, offset)

Specify path and offset each time

Pros? Cons!?

Pass all info — option-2

Stateless protocol: server maintains no state about clients

Use file handles

fh = open(char *path);

pread(fh, buf

,Size, offset);

pwrite(fh, buf

,Size, offset);

File Handle = <vo

Opaque to client,

ume ID, inode #, generation#>

burpose of generation#! when incremented!?

Some NFS calls

Lookup — notice no open (open == series of lookups)
GetAttr

Read
Write

Who keeps the fd to fh mapping!?

Reading a File on NFS

Client Server
fd = open("/foo”, ...);
Send LOOKUP (rootdir FH, "foo”)
Receive LOOKUP request

Receive LOOKUP reply
allocate file desc in open file table
store foo’s FH in table
store current file position (0)
return file descriptor to application

look for "foo” in root dir
return foo’s FH + attributes

read(fd, buffer, MAX);
Index into open file table with fd
get NFS file handle (FH)
use current file position as offset
Send READ (FH, offset=0, count=MAX)

Receive READ reply
update file position (+bytes read)
set current file position = MAX
return data/error code to app

Receive READ request
use FH to get volume /inode num
read inode from disk (or cache)
compute block location (using offset)
read data from disk (or cache)
return data to client

Close() a file?

What happens!?

No server communication

Failures

What do clients do when they don’t get a response!

Request lost
Server down

Reply lost

Simplifying Recovery with ldempotency
All cases are handled uniformly

read
write
mkdir

creat

Client-side caching
Cache data for performance

What are the problems?

P|: update visibility
Scenario: edit a file and move on to a different workstation
Solution: flush-on-close

Drawbacks?

P2: stale cache

Cached content could be old

Solution: getattr

What problems will this introduce?

Write buffering on server

Can server buffer writes?

NetApp bbram...

