
CS 423: Operating Systems Design

Ram Alagappan

Acks: Prof. Tianyin Xu and

Prof. Shivaram Venkataraman (Wisconsin) for the slides.

CS 423

Operating System Design:

File Systems-II/Adv Storage 1

CS 423: Operating Systems Design

Recap

2

Very small file system (VSFS)
On-disk blocks: superblock, inode table,
bitmaps, data blocks
File indexing: pointers, indirection, extents
MS FAT
Access methods: what happens on a file
create/write/read
Page cache
Crash consistency – problem

Today’s lecture: solutions to CC and LFS

CS 423: Operating Systems Design

Crash Consistency

Basic problem:

Must update many data structure on disk as
a unit

What if failure happens in the middle

Types of failure:

kernel panic

power failures

CS 423: Operating Systems Design

Append a Block Example

How many blocks do we need to write to
accomplish the append?

Which ones?

CS 423: Operating Systems Design

Problems

What if only Db is written?
Only i[V2] is written to disk? (2 problems)
Data bitmap is alone written to disk?
Bitmap and data are written:
Data and inode are written:
Bitmap and inode are written:

What’s special about the last case?

CS 423: Operating Systems Design

Metadata vs. Data

FS Metadata consistency vs. Data consistency

FS metadata consistency: internal structures
agree with each other

Data consistency: additionally, the data must
“make sense” to applications and users

CS 423: Operating Systems Design

FSCK

Let inconsistencies happen and take care
during reboot

CS 423: Operating Systems Design

Fsck Checks

Do superblocks match?

Is the list of free blocks correct?

Do number of dir entries equal inode link counts?

Do different inodes ever point to same block?

Are there any bad block pointers?

Do directories contain “.” and “..”?

…

CS 423: Operating Systems Design

FREE BLOCKS EXAMPLE

inode

link_count = 1

block

(number 123)

data bitmap

0011001100

for block 123

Free Blocks Example

CS 423: Operating Systems Design

LINK COUNT EXAMPLE

Dir Entry

Dir Entry

inode

link_count = 1

Link Count Example

CS 423: Operating Systems Design

Duplicate Pointers

inode

link_count = 1

block

(number 123)

inode

link_count = 1

CS 423: Operating Systems Design

Fsck Problems

Not always obvious how to fix file system

image - don’t know “correct” state, just

consistent one

Simply too slow!

Checking a 600GB disk
takes ~70 minutes

ffsck: The Fast File System Checker

Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

CS 423: Operating Systems Design

Journaling or WAL

Main idea: write a “note” to a well-known

location before actually writing the blocks

If crash, know what to fix and how to do so from

the note (instead of scanning the entire disk)

CS 423: Operating Systems Design

Journaling in Linux ext3

Append a block to an existing file example

Journal Transaction

Data journaling vs. metadata journaling

CS 423: Operating Systems Design

Journaling or WAL

First write the txn to journal

Once that is safe, write the actual blocks (this is

called checkpointing)

What if crash happens during journal write?

CS 423: Operating Systems Design

Journal Writes

Can issue one write at a time but is too slow
Must maximize how many writes can be
concurrently sent
But sending all 5 blocks together is problematic

How to solve this?

CS 423: Operating Systems Design

One solution

Barriers

Incurs a wait or flush between TxB + Data and

TxE… How to do without waiting?

CS 423: Operating Systems Design

Solution without Wait

CS 423: Operating Systems Design

Recovery

Scan the journal

Checkpoint completed transactions

Discard otherwise

Will the system be safe if crash happens during

recovery

CS 423: Operating Systems Design

Batching for Efficiency

CS 423: Operating Systems Design

What is the problem with DJ?

Think about performance…

Which workload will suffer the most?

CS 423: Operating Systems Design

Metadata Journaling

Data blocks written in “FS proper” (in place)

Metadata goes via journal

What is the order of writes?

CS 423: Operating Systems Design

Order of Writes

D → JM → JC → M

First data, write metadata to journal, write

commit block, then checkpoint metadata

D || JM → JC → M (|| means concurrent)

Is this safe?

CS 423: Operating Systems Design

Order of Writes

D → JM → JC → M

First data, write metadata to journal, write

commit block, then checkpoint metadata

D || JM → JC → M (|| means concurrent)

Is this safe?

CS 423: Operating Systems Design

Log Structured FS

Motivation:

1. Sequential speed is much higher than

random – all writes must be sequential

ideally

2. Memory sizes are growing – write

performance matters the most, can also

buffer more

CS 423: Operating Systems Design

Goal

Make all writes sequential

CS 423: Operating Systems Design

Buffering and Segments

Buffer and write in large chunks

Called a segment

CS 423: Operating Systems Design

Finding an Inode

How VSFS (or most UNIX FS) does this?

LFS: what’s the problem?

CS 423: Operating Systems Design

Finding an Inode

LFS uses a new structure called imap

Imap: take inode as input give disk address

Where should imap be?

Memory? Fixed location on disk?

CS 423: Operating Systems Design

How to Find IMAP!?

If in the log, how to find it?

CS 423: Operating Systems Design

Reading a File

Assume nothing in memory

What are the steps?

CS 423: Operating Systems Design

Directories

Creating a file foo in a directory and appending

a block to it

CS 423: Operating Systems Design

Garbage Collection

The problem?

The opportunity?

CS 423: Operating Systems Design

Cleaning

See which blocks are live within a segment

Write live blocks into a new segment, reuse the

old segment

Segment summary block

CS 423: Operating Systems Design

Crash Consistency in LFS

CS 423: Operating Systems Design

Next Lecture

RAID

Google File System

	Slide 1
	Slide 2
	Slide 3: Crash Consistency
	Slide 4: Append a Block Example
	Slide 5: Problems
	Slide 6: Metadata vs. Data
	Slide 7: FSCK
	Slide 8: Fsck Checks
	Slide 9: FREE BLOCKS EXAMPLE
	Slide 10: LINK COUNT EXAMPLE
	Slide 11: Duplicate Pointers
	Slide 12: Fsck Problems
	Slide 13: Journaling or WAL
	Slide 14: Journaling in Linux ext3
	Slide 15: Journaling or WAL
	Slide 16: Journal Writes
	Slide 17: One solution
	Slide 18: Solution without Wait
	Slide 19: Recovery
	Slide 20: Batching for Efficiency
	Slide 21: What is the problem with DJ?
	Slide 22: Metadata Journaling
	Slide 23: Order of Writes
	Slide 24: Order of Writes
	Slide 25: Log Structured FS
	Slide 26: Goal
	Slide 27: Buffering and Segments
	Slide 28: Finding an Inode
	Slide 29: Finding an Inode
	Slide 30: How to Find IMAP!?
	Slide 31: Reading a File
	Slide 32: Directories
	Slide 33: Garbage Collection
	Slide 34: Cleaning
	Slide 35: Crash Consistency in LFS
	Slide 36: Next Lecture

