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Recap

2

Very small file system (VSFS)
On-disk blocks: superblock, inode table, 
bitmaps, data blocks
File indexing: pointers, indirection, extents
MS FAT 
Access methods: what happens on a file 
create/write/read
Page cache
Crash consistency – problem

Today’s lecture: solutions to CC and LFS
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Crash Consistency

Basic problem:

Must update many data structure on disk as 
a unit

What if failure happens in the middle

Types of failure:

kernel panic 

power failures
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Append a Block Example

How many blocks do we need to write to 
accomplish the append?

Which ones?
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Problems

What if only Db is written?
Only i[V2] is written to disk? (2 problems)
Data bitmap is alone written to disk?
Bitmap and data are written:
Data and inode are written:
Bitmap and inode are written:

What’s special about the last case?
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Metadata vs. Data

FS Metadata consistency vs. Data consistency

FS metadata consistency: internal structures 
agree with each other 

Data consistency: additionally, the data must 
“make sense” to applications and users
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FSCK

Let inconsistencies happen and take care 
during reboot 
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Fsck Checks

Do superblocks match?

Is the list of free blocks correct?

Do number of dir entries equal inode link counts?

Do different inodes ever point to same block?

Are there any bad block pointers?

Do directories contain “.” and “..”?

…
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FREE BLOCKS EXAMPLE

inode

link_count = 1

block

(number 123)

data bitmap

0011001100

for block 123

Free Blocks Example
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LINK COUNT EXAMPLE

Dir Entry

Dir Entry

inode

link_count = 1

Link Count Example
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Duplicate Pointers

inode

link_count = 1

block

(number 123)

inode

link_count = 1
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Fsck Problems

Not always obvious how to fix file system 

image - don’t know “correct” state, just 

consistent one

Simply too slow!

Checking a 600GB disk 
takes ~70 minutes

ffsck: The Fast File System Checker

Ao Ma, Chris Dragga,  Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
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Journaling or WAL

Main idea: write a “note” to a well-known 

location before actually writing the blocks

If crash, know what to fix and how to do so from 

the note (instead of scanning the entire disk)
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Journaling in Linux ext3

Append a block to an existing file example

Journal Transaction

Data journaling vs. metadata journaling
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Journaling or WAL

First write the txn to journal

Once that is safe, write the actual blocks (this is 

called checkpointing)

What if crash happens during journal write?
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Journal Writes

Can issue one write at a time but is too slow
Must maximize how many writes can be 
concurrently sent
But sending all 5 blocks together is problematic

How to solve this?
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One solution

Barriers

Incurs a wait or flush between TxB + Data and 

TxE… How to do without waiting?
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Solution without Wait
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Recovery

Scan the journal

Checkpoint completed transactions

Discard otherwise

Will the system be safe if crash happens during 

recovery
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Batching for Efficiency
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What is the problem with DJ?

Think about performance…

Which workload will suffer the most?



CS 423: Operating Systems Design

Metadata Journaling

Data blocks written in “FS proper” (in place)

Metadata goes via journal

What is the order of writes?
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Order of Writes

D → JM → JC → M

First data, write metadata to journal, write 

commit block, then checkpoint metadata

D || JM → JC → M (|| means concurrent)

Is this safe?



CS 423: Operating Systems Design

Order of Writes

D → JM → JC → M

First data, write metadata to journal, write 

commit block, then checkpoint metadata

D || JM → JC → M (|| means concurrent)

Is this safe?



CS 423: Operating Systems Design

Log Structured FS

Motivation:

1. Sequential speed is much higher than 

random – all writes must be sequential 

ideally

2. Memory sizes are growing – write 

performance matters the most, can also 

buffer more
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Goal

Make all writes sequential
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Buffering and Segments

Buffer and write in large chunks

Called a segment
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Finding an Inode

How VSFS (or most UNIX FS) does this?

LFS: what’s the problem?
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Finding an Inode

LFS uses a new structure called imap

Imap: take inode as input give disk address

Where should imap be?

Memory? Fixed location on disk?



CS 423: Operating Systems Design

How to Find IMAP!?

If in the log, how to find it? 
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Reading a File

Assume nothing in memory

What are the steps?
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Directories

Creating a file foo in a directory and appending 

a block to it
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Garbage Collection

The problem?

The opportunity?
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Cleaning

See which blocks are live within a segment

Write live blocks into a new segment, reuse the 

old segment

Segment summary block



CS 423: Operating Systems Design

Crash Consistency in LFS
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Next Lecture

RAID

Google File System
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