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Recap
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File names: FD, inode, path names

Directories: name → inode mapping

FD table – per process

Open file table – OS level

Fork, dup – sharing of OFT entries

Fsync, rename, unlink 

Hard links vs. soft link (symlinks)
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Using vs. Implementing
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So far, focus on interface of FS 

how apps view FS

Today, more about how to implement the

FS itself

Then, crash consistency
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FILE SYSTEM 

IMPLEMENTATION
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VSFS

Very Simple File System

Two aspects:

Data structures – how are files, directories, 

etc stored on disk

Access methods – how are high-level 

operations like open, read, write mapped to 

these DS operations
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VSFS

Assume a small disk partition with 64 blocks

Data and metadata – most space must go for 

data blocks
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VSFS – Data blocks
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VSFS – Inodes (metadata)

Called the inode table

With 256-byte inodes, we can store 16 inodes

in a block, so totally 80 files can be stored in 

VSFS

But we can simply scale VSFS to a larger 

disk
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VSFS – Bitmaps (metadata)

Need allocation structures

Free lists – linked list is an option

Most commonly used: bitmap (ib, db)

We actually don’t need a block for bitmap
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VSFS – (metadata)

What’s stored in the first block?
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VSFS – Superblock (metadata)

How many data blocks, how many inode

blocks

Inode table starting block #
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INODE

Implicitly know the block/sector number
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INODE
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What is the max file size?

We have 15 block pointers

What is the max file size?

How can we support larger files?
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Direct and Indirect Pointers



CS 423: Operating Systems Design

File Size

File size with one indirect pointer + 12 direct:

1024 * 4K + 12*4K   – roughly 4MB

File size with 1 double ID + 1 ID + 12 direct:

1024 * 1024 * 4K + 1024 * 4K + 12*4K –

roughly 4GB 
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Extent based approach

No pointer for every block

<Starting block, num blocks>

Adv compared to pointer approach?

Cons?
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Linked Files

18

■ File header points to 1st 
block on disk

■ Each block points to next

■ Pros
■ Can grow files dynamically
■ Free list is similar to a file

■ Cons
■ random access: horrible
■ unreliable: losing a block 

means losing the rest

File header

null

. . .
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Linked Allocation
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MS File Allocation Table (FAT)
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■ Linked list index structure

■ Simple, easy to implement

■ Still widely used (e.g., thumb drives)

■ File table:

■ Linear map of all blocks on disk

■ Each file a linked list of blocks
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MS File Allocation Table (FAT)
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Small files: Inlined
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■ Really small files

■ No need to have a separate data block

■ Inline them into the inode – can access 
with fewer disk accesses
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Directory Organization

What is the inode of this directory?

Where is the directory’s content stored?
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Creating and Writing File

Why read foo data?

What is written in foo 

data?

What is written in bar 

inode?

Will you ever need to 

write data bitmap on 

file create?
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Page Cache

Disk access is expensive

Can cache blocks in memory – all FS do this

Integrated with virtual memory

can balance fs cache vs. vm

Also helps write buffering (need to fsync for 
persistence)

Flushing deamon
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Crash Consistency

Basic problem:

Must update many data structure on disk as 
a unit

What if failure happens in the middle

Types of failure:

kernel panic 

power failures
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Append a Block Example

How many blocks do we need to write to 
accomplish the append?

Which ones?
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Problems

What if only Db is written?
Only i[V2] is written to disk? (2 problems)
Data bitmap is alone written to disk?
Bitmap and data are written:
Data and inode are written:
Bitmap and inode are written:

What’s special about the last case?
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Metadata vs. Data

FS Metadata consistency vs. Data consistency

FS metadata consistency: internal structures
agree with each other

Data consistency: additionally, the data must 
“make sense” to applications and users
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FSCK

Let inconsistencies happen and take care 
during reboot 
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Fsck Checks

Do superblocks match?

Is the list of free blocks correct?

Do number of dir entries equal inode link counts?

Do different inodes ever point to same block?

Are there any bad block pointers?

Do directories contain “.” and “..”?

…
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FREE BLOCKS EXAMPLE

inode

link_count = 1

block

(number 123)

data bitmap

0011001100

for block 123

Free Blocks Example
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LINK COUNT EXAMPLE

Dir Entry

Dir Entry

inode

link_count = 1

Link Count Example
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Duplicate Pointers

inode

link_count = 1

block

(number 123)

inode

link_count = 1
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Fsck Problems

Not always obvious how to fix file system 

image - don’t know “correct” state, just 

consistent one

Simply too slow!

Checking a 600GB disk 
takes ~70 minutes

ffsck: The Fast File System Checker

Ao Ma, Chris Dragga,  Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
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Journaling or WAL

Main idea: write a “note” to a well-known 

location before actually writing the blocks

If crash, know what to fix and how to do so from 

the note (instead of scanning the entire disk)
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Journaling in Linux ext3

Append a block to an existing file example

Journal Transaction

Data journaling vs. metadata journaling
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Journaling or WAL

First write the txn to journal

Once that is safe, write the actual blocks (this is

called checkpointing)

What if crash happens during journal write?
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Journal Writes

Can issue one write at a time but is too slow
Must maximize how many writes can be
concurrently sent
But sending all 5 blocks together is problematic

How to solve this?
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One solution

Incurs a wait or flush between TxB + Data and 

TxE… How to do without waiting?
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Solution without Wait
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What is the problem with DJ?
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Next Lecture

Continue CC (more journaling + LFS)

Then:

Advanced storage-1: RAID, NFS

Advanced storage-2: AFS, GFS
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