
CS 423: Operating Systems Design

Ram Alagappan

Acks: Prof. Tianyin Xu and

Prof. Shivaram Venkataraman (Wisconsin) for the slides.

CS 423

Operating System Design:

File Systems - II

CS 423: Operating Systems Design

Recap

2

File names: FD, inode, path names

Directories: name → inode mapping

FD table – per process

Open file table – OS level

Fork, dup – sharing of OFT entries

Fsync, rename, unlink

Hard links vs. soft link (symlinks)

CS 423: Operating Systems Design

Using vs. Implementing

3

So far, focus on interface of FS

how apps view FS

Today, more about how to implement the

FS itself

Then, crash consistency

CS 423: Operating Systems Design

FILE SYSTEM

IMPLEMENTATION

CS 423: Operating Systems Design

VSFS

Very Simple File System

Two aspects:

Data structures – how are files, directories,

etc stored on disk

Access methods – how are high-level

operations like open, read, write mapped to

these DS operations

CS 423: Operating Systems Design

VSFS

Assume a small disk partition with 64 blocks

Data and metadata – most space must go for

data blocks

CS 423: Operating Systems Design

VSFS – Data blocks

CS 423: Operating Systems Design

VSFS – Inodes (metadata)

Called the inode table

With 256-byte inodes, we can store 16 inodes

in a block, so totally 80 files can be stored in

VSFS

But we can simply scale VSFS to a larger

disk

CS 423: Operating Systems Design

VSFS – Bitmaps (metadata)

Need allocation structures

Free lists – linked list is an option

Most commonly used: bitmap (ib, db)

We actually don’t need a block for bitmap

CS 423: Operating Systems Design

VSFS – (metadata)

What’s stored in the first block?

CS 423: Operating Systems Design

VSFS – Superblock (metadata)

How many data blocks, how many inode

blocks

Inode table starting block #

CS 423: Operating Systems Design

INODE

Implicitly know the block/sector number

CS 423: Operating Systems Design

INODE

CS 423: Operating Systems Design

What is the max file size?

We have 15 block pointers

What is the max file size?

How can we support larger files?

CS 423: Operating Systems Design

Direct and Indirect Pointers

CS 423: Operating Systems Design

File Size

File size with one indirect pointer + 12 direct:

1024 * 4K + 12*4K – roughly 4MB

File size with 1 double ID + 1 ID + 12 direct:

1024 * 1024 * 4K + 1024 * 4K + 12*4K –

roughly 4GB

CS 423: Operating Systems Design

Extent based approach

No pointer for every block

<Starting block, num blocks>

Adv compared to pointer approach?

Cons?

CS 423: Operating Systems Design

Linked Files

18

■ File header points to 1st
block on disk

■ Each block points to next

■ Pros
■ Can grow files dynamically
■ Free list is similar to a file

■ Cons
■ random access: horrible
■ unreliable: losing a block

means losing the rest

File header

null

. . .

CS 423: Operating Systems Design

Linked Allocation

19

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

20

■ Linked list index structure

■ Simple, easy to implement

■ Still widely used (e.g., thumb drives)

■ File table:

■ Linear map of all blocks on disk

■ Each file a linked list of blocks

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

21

CS 423: Operating Systems Design

Small files: Inlined

22

■ Really small files

■ No need to have a separate data block

■ Inline them into the inode – can access
with fewer disk accesses

CS 423: Operating Systems Design

Directory Organization

What is the inode of this directory?

Where is the directory’s content stored?

CS 423: Operating Systems Design

Creating and Writing File

Why read foo data?

What is written in foo

data?

What is written in bar

inode?

Will you ever need to

write data bitmap on

file create?

CS 423: Operating Systems Design

Page Cache

Disk access is expensive

Can cache blocks in memory – all FS do this

Integrated with virtual memory

can balance fs cache vs. vm

Also helps write buffering (need to fsync for
persistence)

Flushing deamon

CS 423: Operating Systems Design

Crash Consistency

Basic problem:

Must update many data structure on disk as
a unit

What if failure happens in the middle

Types of failure:

kernel panic

power failures

CS 423: Operating Systems Design

Append a Block Example

How many blocks do we need to write to
accomplish the append?

Which ones?

CS 423: Operating Systems Design

Problems

What if only Db is written?
Only i[V2] is written to disk? (2 problems)
Data bitmap is alone written to disk?
Bitmap and data are written:
Data and inode are written:
Bitmap and inode are written:

What’s special about the last case?

CS 423: Operating Systems Design

Metadata vs. Data

FS Metadata consistency vs. Data consistency

FS metadata consistency: internal structures
agree with each other

Data consistency: additionally, the data must
“make sense” to applications and users

CS 423: Operating Systems Design

FSCK

Let inconsistencies happen and take care
during reboot

CS 423: Operating Systems Design

Fsck Checks

Do superblocks match?

Is the list of free blocks correct?

Do number of dir entries equal inode link counts?

Do different inodes ever point to same block?

Are there any bad block pointers?

Do directories contain “.” and “..”?

…

CS 423: Operating Systems Design

FREE BLOCKS EXAMPLE

inode

link_count = 1

block

(number 123)

data bitmap

0011001100

for block 123

Free Blocks Example

CS 423: Operating Systems Design

LINK COUNT EXAMPLE

Dir Entry

Dir Entry

inode

link_count = 1

Link Count Example

CS 423: Operating Systems Design

Duplicate Pointers

inode

link_count = 1

block

(number 123)

inode

link_count = 1

CS 423: Operating Systems Design

Fsck Problems

Not always obvious how to fix file system

image - don’t know “correct” state, just

consistent one

Simply too slow!

Checking a 600GB disk
takes ~70 minutes

ffsck: The Fast File System Checker

Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

CS 423: Operating Systems Design

Journaling or WAL

Main idea: write a “note” to a well-known

location before actually writing the blocks

If crash, know what to fix and how to do so from

the note (instead of scanning the entire disk)

CS 423: Operating Systems Design

Journaling in Linux ext3

Append a block to an existing file example

Journal Transaction

Data journaling vs. metadata journaling

CS 423: Operating Systems Design

Journaling or WAL

First write the txn to journal

Once that is safe, write the actual blocks (this is

called checkpointing)

What if crash happens during journal write?

CS 423: Operating Systems Design

Journal Writes

Can issue one write at a time but is too slow
Must maximize how many writes can be
concurrently sent
But sending all 5 blocks together is problematic

How to solve this?

CS 423: Operating Systems Design

One solution

Incurs a wait or flush between TxB + Data and

TxE… How to do without waiting?

CS 423: Operating Systems Design

Solution without Wait

CS 423: Operating Systems Design

What is the problem with DJ?

CS 423: Operating Systems Design

Next Lecture

Continue CC (more journaling + LFS)

Then:

Advanced storage-1: RAID, NFS

Advanced storage-2: AFS, GFS

	Slide 1
	Slide 2
	Slide 3
	Slide 4: FILE SYSTEM IMPLEMENTATION
	Slide 5: VSFS
	Slide 6: VSFS
	Slide 7: VSFS – Data blocks
	Slide 8: VSFS – Inodes (metadata)
	Slide 9: VSFS – Bitmaps (metadata)
	Slide 10: VSFS – (metadata)
	Slide 11: VSFS – Superblock (metadata)
	Slide 12: INODE
	Slide 13: INODE
	Slide 14: What is the max file size?
	Slide 15: Direct and Indirect Pointers
	Slide 16: File Size
	Slide 17: Extent based approach
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Directory Organization
	Slide 24: Creating and Writing File
	Slide 25: Page Cache
	Slide 26: Crash Consistency
	Slide 27: Append a Block Example
	Slide 28: Problems
	Slide 29: Metadata vs. Data
	Slide 30: FSCK
	Slide 31: Fsck Checks
	Slide 32: FREE BLOCKS EXAMPLE
	Slide 33: LINK COUNT EXAMPLE
	Slide 34: Duplicate Pointers
	Slide 35: Fsck Problems
	Slide 36: Journaling or WAL
	Slide 37: Journaling in Linux ext3
	Slide 38: Journaling or WAL
	Slide 39: Journal Writes
	Slide 40: One solution
	Slide 41: Solution without Wait
	Slide 42: What is the problem with DJ?
	Slide 43: Next Lecture

