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DISKS → FILES
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Plan

3

■ This lecture: Files and FS API

■ Next: File system implementation

■ After: RAID/Other topics
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What is a File?

Array of persistent bytes that can be read/written

File system consists of many files

Refers to collection of files

Also refers to part of OS that manages those files

Files need names to access correct one

Three types of names

–Unique id: inode numbers

– Path

– File descriptor
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File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

seek(int inode, off_t offset)

Disadvantages?
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File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?
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Paths

String names are friendlier than number 
names

File system still interacts with inode
numbers

Store path-to-inode mappings in a special 
file or rather a Directory!
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Paths

Directory Tree instead of single root 
directory

File name needs to be unique within a 
directory

/usr/lib/file.so

/tmp/file.so

Store file-to-inode mapping in each 
directory
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Example: read /hello

Reads for getting final inode called “traversal”
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File API (attempt 2)

read(char *path, void *buf, off_t offset, size_t nbyte)

write(char *path, void *buf, off_t offset, size_t nbyte)

Disadvantages?  

Expensive traversal!  

Goal: traverse once
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File Descriptor (fd)

Idea: 

Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).

Do reads/writes via descriptor, which tracks offset

Each process:

File-descriptor table contains pointers to open file descriptors

First time a process opens a file, what will be the fd in Unix/Linux?
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File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

advantages:

- string names

- hierarchical

- traverse once

- offsets precisely defined
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FD Table (xv6)
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FD offsets
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FD Offsets
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LSEEK and READ

Assume head is on track 1
Suppose we do lseek to X and the sector for X is on 
track 4
Where is head immediately after lseek?

off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK_SET, the offset is set to offset bytes.
If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes.
If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes.
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Entries in OFT
When a process opens its first file (say whose inode is 10), 

What will be the values in the file struct?

What if another process opens the same file?

How will the values inside file struct change? 
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Shared Entries in OFT
Fork:

What is the parent trying to print?

What value will be printed?
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Shared Entries in OFT

What’s happening here?
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size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

int fd3 = dup(fd2);         // returns 5

DUP
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How many entries in the OFT (assume 

no other process)? 

Offset for fd1?

Offset for fd2?

Offset for fd3

DUP
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Fsync

File system keeps newly written data in memory for a 
while

Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to 
flush its write cache

Makes data durable
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Rename

rename(char *old, char *new):

Do we need to copy/move data?

How does the FS implement this?

Does it matter whether the old and new 
names are in the same directory or different 
directories?
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Rename

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data

Even when renaming to new directory

What can go wrong if system crashes at wrong time?
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Paths and Links

(Hard) Link

Inode has a field called “nlinks”

When is it incremented?

When is it decremented?
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Deleting Files

What is the system call for deleting files?

Inode (and associated file) is garbage collected when there 
are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits
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Symbolic or soft links

A different type of link

Hard links don’t work with directory and cannot be cross-FS

touch foo; echo hello > foo;

Hardlink: ln foo foo2

Stat foo; what will be the size and inode?

Stat foo2; what will be the size and inode?

Softlink: ln –s foo bar

Stat bar; what will be the size and inode?
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Atomic File Update

Say you want to update file.txt atomically

If crash, should see only old contents or only new 
contents

How to do?
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FILE SYSTEM 

IMPLEMENTATION
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VSFS

Very Simple File System

Two aspects:

Data structures – how are files, directories, etc
stored on disk

Access methods – how are high-level operations 
like open, read, write mapped to these DS 
operations
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VSFS

Assume a small disk partition with 64 blocks

Data and metadata – most space must go for 
data blocks
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VSFS – Data blocks
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VSFS – Inodes (metadata)

Called the inode table

With 256-byte inodes, we can store 16 inodes in 
a block, so totally 80 files can be stored in VSFS

But we can simply scale VSFS to a larger disk
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VSFS – Bitmaps (metadata)

Need allocation structures

Free lists – linked list is an option

Most commonly used: bitmap (ib, db)

We actually don’t need a block for bitmap
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VSFS – (metadata)

What’s stored in the first block?
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VSFS – Superblock (metadata)

How many data blocks, how many inode blocks

Inode table starting block #
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INODE

Implicitly know the block/sector number
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INODE
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Direct and Indirect Pointers
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Extent based approach

No pointer for every block

<Starting block, num blocks>

Adv compared to pointer approach?

Cons?
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Linked Files

43

■ File header points to 1st 
block on disk

■ Each block points to next

■ Pros
■ Can grow files dynamically
■ Free list is similar to a file

■ Cons
■ random access: horrible
■ unreliable: losing a block 

means losing the rest

File header

null

. . .
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Linked Allocation

44
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MS File Allocation Table (FAT)

45

■ Linked list index structure

■ Simple, easy to implement

■ Still widely used (e.g., thumb drives)

■ File table:

■ Linear map of all blocks on disk

■ Each file a linked list of blocks
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MS File Allocation Table (FAT)

46
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MS File Allocation Table (FAT)
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■ Pros:

■ Easy to find free block

■ Easy to append to a file

■ Easy to delete a file

■ Cons:

■ Small file access is slow

■ Random access is very slow

■ Fragmentation

■ File blocks for a given file may be scattered

■ Files in the same directory may be scattered

■ Problem becomes worse as disk fills
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Small files: Inlined

48

■ Really small files

■ No need to have a separate data block

■ Inline them into the inode – can access 
with fewer disk accesses
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Directory Organization

What is the inode of this directory?

Where is the directory’s content stored?
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Next Lecture

Continue more with FS internals and 
implementation

Also, FFS/LFS/Journaling

Beyond: RAID
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