
CS 423: Operating Systems Design

Ram Alagappan

Acks: Prof. Tianyin Xu and

Prof. Shivaram Venkataraman (Wisconsin) for the slides.

CS 423

Operating System Design:

File Systems - I

CS 423: Operating Systems Design

DISKS → FILES

CS 423: Operating Systems Design

Plan

3

■ This lecture: Files and FS API

■ Next: File system implementation

■ After: RAID/Other topics

CS 423: Operating Systems Design

What is a File?

Array of persistent bytes that can be read/written

File system consists of many files

Refers to collection of files

Also refers to part of OS that manages those files

Files need names to access correct one

Three types of names

–Unique id: inode numbers

– Path

– File descriptor

CS 423: Operating Systems Design

location

size=12

inodes

0

location

size
1

location

size
2

location

size=6
3

…

file

file

in
o

d
e

 n
u

m
b

e
r

Data

Meta-data

CS 423: Operating Systems Design

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

seek(int inode, off_t offset)

Disadvantages?

CS 423: Operating Systems Design

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

CS 423: Operating Systems Design

Paths

String names are friendlier than number
names

File system still interacts with inode
numbers

Store path-to-inode mappings in a special
file or rather a Directory!

CS 423: Operating Systems Design

location

size=12

inodes

0

location

size
1

location

size
2

location

size=6
3

…

in
o

d
e

 n
u

m
b

e
r

“readme.txt”: 3, “foo”: 0, …

CS 423: Operating Systems Design

Paths

Directory Tree instead of single root
directory

File name needs to be unique within a
directory

/usr/lib/file.so

/tmp/file.so

Store file-to-inode mapping in each
directory

CS 423: Operating Systems Design

location

size=12

inodes

0

location

size
1

location

size
2

location

size=6
3

…

in
o

d
e

 n
u

m
b

e
r

“readme.txt”: 3, “foo”: 0, …

Example: read /hello

Reads for getting final inode called “traversal”

CS 423: Operating Systems Design

File API (attempt 2)

read(char *path, void *buf, off_t offset, size_t nbyte)

write(char *path, void *buf, off_t offset, size_t nbyte)

Disadvantages?

Expensive traversal!

Goal: traverse once

CS 423: Operating Systems Design

File Descriptor (fd)

Idea:

Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).

Do reads/writes via descriptor, which tracks offset

Each process:

File-descriptor table contains pointers to open file descriptors

First time a process opens a file, what will be the fd in Unix/Linux?

CS 423: Operating Systems Design

File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

advantages:

- string names

- hierarchical

- traverse once

- offsets precisely defined

CS 423: Operating Systems Design

FD Table (xv6)

CS 423: Operating Systems Design

FD offsets

CS 423: Operating Systems Design

FD Offsets

CS 423: Operating Systems Design

LSEEK and READ

Assume head is on track 1
Suppose we do lseek to X and the sector for X is on
track 4
Where is head immediately after lseek?

off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK_SET, the offset is set to offset bytes.
If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes.
If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes.

CS 423: Operating Systems Design

Entries in OFT
When a process opens its first file (say whose inode is 10),

What will be the values in the file struct?

What if another process opens the same file?

How will the values inside file struct change?

CS 423: Operating Systems Design

Shared Entries in OFT
Fork:

What is the parent trying to print?

What value will be printed?

CS 423: Operating Systems Design

Shared Entries in OFT

What’s happening here?

CS 423: Operating Systems Design

0
1
2
3
4
5

offset =

inode =

OFT
fd table

location = …

size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

int fd3 = dup(fd2); // returns 5

DUP

CS 423: Operating Systems Design

How many entries in the OFT (assume

no other process)?

Offset for fd1?

Offset for fd2?

Offset for fd3

DUP

CS 423: Operating Systems Design

Fsync

File system keeps newly written data in memory for a
while

Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to
flush its write cache

Makes data durable

CS 423: Operating Systems Design

Rename

rename(char *old, char *new):

Do we need to copy/move data?

How does the FS implement this?

Does it matter whether the old and new
names are in the same directory or different
directories?

CS 423: Operating Systems Design

Rename

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data

Even when renaming to new directory

What can go wrong if system crashes at wrong time?

CS 423: Operating Systems Design

Paths and Links

(Hard) Link

Inode has a field called “nlinks”

When is it incremented?

When is it decremented?

CS 423: Operating Systems Design

Deleting Files

What is the system call for deleting files?

Inode (and associated file) is garbage collected when there
are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

CS 423: Operating Systems Design

Symbolic or soft links

A different type of link

Hard links don’t work with directory and cannot be cross-FS

touch foo; echo hello > foo;

Hardlink: ln foo foo2

Stat foo; what will be the size and inode?

Stat foo2; what will be the size and inode?

Softlink: ln –s foo bar

Stat bar; what will be the size and inode?

CS 423: Operating Systems Design

Atomic File Update

Say you want to update file.txt atomically

If crash, should see only old contents or only new
contents

How to do?

CS 423: Operating Systems Design

FILE SYSTEM

IMPLEMENTATION

CS 423: Operating Systems Design

VSFS

Very Simple File System

Two aspects:

Data structures – how are files, directories, etc
stored on disk

Access methods – how are high-level operations
like open, read, write mapped to these DS
operations

CS 423: Operating Systems Design

VSFS

Assume a small disk partition with 64 blocks

Data and metadata – most space must go for
data blocks

CS 423: Operating Systems Design

VSFS – Data blocks

CS 423: Operating Systems Design

VSFS – Inodes (metadata)

Called the inode table

With 256-byte inodes, we can store 16 inodes in
a block, so totally 80 files can be stored in VSFS

But we can simply scale VSFS to a larger disk

CS 423: Operating Systems Design

VSFS – Bitmaps (metadata)

Need allocation structures

Free lists – linked list is an option

Most commonly used: bitmap (ib, db)

We actually don’t need a block for bitmap

CS 423: Operating Systems Design

VSFS – (metadata)

What’s stored in the first block?

CS 423: Operating Systems Design

VSFS – Superblock (metadata)

How many data blocks, how many inode blocks

Inode table starting block #

CS 423: Operating Systems Design

INODE

Implicitly know the block/sector number

CS 423: Operating Systems Design

INODE

CS 423: Operating Systems Design

Direct and Indirect Pointers

CS 423: Operating Systems Design

Extent based approach

No pointer for every block

<Starting block, num blocks>

Adv compared to pointer approach?

Cons?

CS 423: Operating Systems Design

Linked Files

43

■ File header points to 1st
block on disk

■ Each block points to next

■ Pros
■ Can grow files dynamically
■ Free list is similar to a file

■ Cons
■ random access: horrible
■ unreliable: losing a block

means losing the rest

File header

null

. . .

CS 423: Operating Systems Design

Linked Allocation

44

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

45

■ Linked list index structure

■ Simple, easy to implement

■ Still widely used (e.g., thumb drives)

■ File table:

■ Linear map of all blocks on disk

■ Each file a linked list of blocks

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

46

CS 423: Operating Systems Design

MS File Allocation Table (FAT)

47

■ Pros:

■ Easy to find free block

■ Easy to append to a file

■ Easy to delete a file

■ Cons:

■ Small file access is slow

■ Random access is very slow

■ Fragmentation

■ File blocks for a given file may be scattered

■ Files in the same directory may be scattered

■ Problem becomes worse as disk fills

CS 423: Operating Systems Design

Small files: Inlined

48

■ Really small files

■ No need to have a separate data block

■ Inline them into the inode – can access
with fewer disk accesses

CS 423: Operating Systems Design

Directory Organization

What is the inode of this directory?

Where is the directory’s content stored?

CS 423: Operating Systems Design

Next Lecture

Continue more with FS internals and
implementation

Also, FFS/LFS/Journaling

Beyond: RAID

	Slide 1
	Slide 2: DISKS FILES
	Slide 3
	Slide 4: What is a File?
	Slide 5
	Slide 6: File API (attempt 1)
	Slide 7: File API (attempt 1)
	Slide 8: Paths
	Slide 9
	Slide 10: Paths
	Slide 11
	Slide 12: File API (attempt 2)
	Slide 13: File Descriptor (fd)
	Slide 14: File API (attempt 3)
	Slide 15: FD Table (xv6)
	Slide 16: FD offsets
	Slide 17: FD Offsets
	Slide 18: LSEEK and READ
	Slide 19: Entries in OFT
	Slide 20: Shared Entries in OFT
	Slide 21: Shared Entries in OFT
	Slide 22
	Slide 23: DUP
	Slide 24: Fsync
	Slide 25: Rename
	Slide 26: Rename
	Slide 27
	Slide 28: Deleting Files
	Slide 29: Symbolic or soft links
	Slide 30: Atomic File Update
	Slide 31: FILE SYSTEM IMPLEMENTATION
	Slide 32: VSFS
	Slide 33: VSFS
	Slide 34: VSFS – Data blocks
	Slide 35: VSFS – Inodes (metadata)
	Slide 36: VSFS – Bitmaps (metadata)
	Slide 37: VSFS – (metadata)
	Slide 38: VSFS – Superblock (metadata)
	Slide 39: INODE
	Slide 40: INODE
	Slide 41: Direct and Indirect Pointers
	Slide 42: Extent based approach
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Directory Organization
	Slide 50: Next Lecture

