CS 423
Operating System Design:
File Systems - |

Ram Alagappan

Acks: Prof. Tianyin Xu and
Prof. Shivaram Venkataraman (Wisconsin) for the slides.

CS 423: Operating Systems Design

DISKS = FILES

Plan

« 1his lecture: Files and FS API
« Next: File system implementation
« After: RAID/Other topics

CS 423: Operating Systems Design

VWhat is a File?

Array of persistent bytes that can be read/written
File system consists of many files

Refers to collection of files

Also refers to part of OS that manages those files

Files need names to access correct one
Three types of names

— Unique id: inode numbers

— Path
— File descriptor

CS 423: Operating Systems Design

Inodes

size=12
Size

location :
flle
Size

Inode number

location

Size=6 Data

Meta-data

CS 423: Operating Systems Design

Fle APl (attempt 1)

read(int inode, void *buf, size t nbyte)
write(int inode, void *buf, size t nbyte)

seek(int inode, off_t offset)

Disadvantages?

CS 423: Operating Systems Design

Fle APl (attempt 1)

read(int inode, void *buf, size t nbyte)
write(int inode, void *buf, size t nbyte)

seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

CS 423: Operating Systems Design

String names are friendlier than number
names

File system still interacts with inode
numbers

Store path-to-inode mappings in a special
file or rather a Directory!

CS 423: Operating Systems Design

Inodes

location
Size=12
1 location
Size
location
Size
location
Size=6

I

“readme.txt”: 3, “foo”; O, ...

- ~ I

CS 423: Operating Systems Design

Inode number

Directory Tree instead of single roof

directory
File name needs to be unique withit f
: 00 bar
directory
[usr/lib/file.so
. bar.txt b f
/tmp/file.so o o o0
bar.txt

Store file-to-inode mapping in each
directory

CS 423: Operating Systems Design

3

Inodes

location
Size=12
location
Size
location
Size
location
Size=6

—_\

“readme.txt”: 3, “foo”; O, ...

- ~ I

Reads for getting final inode called “traversal”

Example: read /hello

Inode number

CS 423: Operating Systems Design

Fle APl (attempt 2)

read(char *path, void *buf, off t offset, size t nbyte)

write(char *path, void *buf, off t offset, size t nbyte)

Disadvantages?

Expensive traversal!
Goal: traverse once

CS 423: Operating Systems Design

File Descriptor (fd)

ldea:

Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).

Do reads/writes via descriptor, which tracks offset

Each process:

File-descriptor table contains pointers to open file descriptors

First time a process opens a file, what will be the fd in Unix/Linux?

CS 423: Operating Systems Design

File APl (attempt 3)

int fd

open(char *path, int flag, mode t mode)
read(int fd, void *buf, size t nbyte)
write(int fd, void *buf, size t nbyte)

close(int fd)

advantages:

- string names

- hierarchical

- traverse once

- offsets precisely defined

CS 423: Operating Systems Design

D Table (xv6)

struct {
struct file { struct spinlock lock;
int ref; struct file file[NFILE];
char readable; ftable;

char writable;
struct 1node *1p;
uint off;

i

struct proc {

struct file xofile[NOFILE]; // Open files

. = =
],q-
r

CS 423: Operating Systems Design

FD offsets

Return Current

System Calls Code Offset
fd = open("file", O_RDONLY) ; 3 0
read (fd, buffer, 100); 100 100
read (fd, buffer, 100); 100 200
read (fd, buffer, 100); 100 300
read (fd, buffer, 100); 0 300
close (£4d) ; 0 —

CS 423: Operating Systems Design

FD Offsets

OFT[10] OFTI[11]
Return Current Current

System Calls Code Offset Offset
fdl = open("file", O_RDONLY) ; 3 0 —~
fd2 = open("file", O_RDONLY) ; 4 0 0
read (fdl, bufferl, 100); 100 100 0
read (fd2, buffer2, 100); 100 100 100
close (£dl); 0 — 100
close (£d2) ; 0 - —

CS 423: Operating Systems Design

[SEEK and READ

off t lseek(int filedesc, off t offset, int whence)

If whence is SEEK _SET, the offset is set to offset bytes.

If whence is SEEK _CUR, the offset is set to its current
location plus offset bytes.

If whence is SEEK _END, the offset is set to the size of
the file plus offset bytes.

Assume head 1s on track 1

Suppose we do lseek to X and the sector for X 1is on
track 4

Where 1s head immediately after 1lseek?

CS 423: Operating Systems Design

Entries in OFT

When a process opens its first file (say whose inode is 10),

What will be the values in the file struct? s+ +ryuct file {

int ref;

char readable;
char writable;
struct i1node *1p;
uint off;

I
What if another process opens the same file?

How will the values inside file struct change?

CS 423: Operating Systems Design

Shared Entries in OFT

Fork:
int main(int argc, char =*argv]|[])
int fd = open("file.txt",
assert (fd >= 0);
int rc = fork();
if (rc == 0) {
rc = lseek (fd, 10, SEEK_SET);
printf("child: offset %d\n",
} else 1if (rc > 0) {
(void) wait (NULL) ;
printf ("parent: offset
(int) lseek (fd,
}
return 0;
}
What is the parent trying to print?

What value will be printed?

O_RDONLY) ;

rc) ;

d"'\l“l",
SEEEK_CUR)) ;

CS 423: Operating Systems Design

Shared Entries in OFT

What’s happening here?

Parent

Open File Table

File
Descriptors

refcnt: 2
off: 10

inode: * [Inode #1000
(file.txt)

CS 423: Operating Systems Design

'—|-
Q
O
D

OFT

offset = .
.) Inode
Inode =

location = ...

size = ...

“file.txt” points here

_h
OORhONOQ

int fd1 = open(“file.txt”); // returns 3
read(fdl, buf, 12);

int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

CS 423: Operating Systems Design

DUP

int fdl = open(“file.txt”); // returns 12
int fd2 = open(“file.txt”); // returns 13
read(fdl, buf, 16);

int fd3 = dup(fd2); // returns 14
read(fd2, buf, 16);

lseek(fdl, 100, SEEK SET);

How many entries in the OFT (assume
no other process)?

Offset for fd17

Offset for fd27

Offset for fd3

CS 423: Operating Systems Design

~SYNC

File system keeps newly written data in memory for a
while

Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to
flush its write cache

Makes data durable

CS 423: Operating Systems Design

Rename

rename(char *old, char *new):
Do we need to copy/move data?
How does the FS implement this?

Does it matter whether the old and new
names are in the same directory or different
directories?

CS 423: Operating Systems Design

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data

Even when renaming to new directory

What can go wrong if system crashes at wrong time?

CS 423: Operating Systems Design

Paths and Links

(Hard) Link
Inode has a field called “nlinks”
When is it incremented?

When is it decremented?

CS 423: Operating Systems Design

Deleting Files

What is the system call for deleting files?

Inode (and associated file) is garbage collected when there
are no references

Paths are deleted when: unlink () is called

FDs are deleted when: close () or process quits

CS 423: Operating Systems Design

Symbolic or soft links

A different type of link

Hard links don't work with directory and cannot be cross-FS
touch foo; echo hello > foo;

Hardlink: In foo foo2

Stat foo; what will be the size and inode!

Stat foo2; what will be the size and inode?

Softlink: In —s foo bar

Stat bar: what will be the size and inode!?

CS 423: Operating Systems Design

Atomic File Update

Say you want to update file.txt atomically

If crash, should see only old contents or only new
contents

How to do?

CS 423: Operating Systems Design

FILE SYSTEM
IMPLEMENTATION

VSFS

Very Simple File System

Two aspects:

Data structures — how are files, directories, etc
stored on disk

Access methods — how are high-level operations
like open, read, write mapped to these DS

operations

CS 423: Operating Systems Design

VSFS

Assume a small disk partition with 64 blocks

0 /7 8 15 16 23 24 31

32 39 40 47 48 95 56 63

Data and metadata — most space must go for
data blocks

CS 423: Operating Systems Design

VSES — Data blocks

: Data Region :
0 7 8 15 16 23 24 31
Data Region

DDDDDDIDID] DIDDIDDDDID] DDIDIDIDIDIDID] DDDDDDIDID
32 39 40 47 48 90 96 63

CS 423: Operating Systems Design

VSFS — Inodes (metadata)

_Inodes Data Region
_WWW
0 15 16 23 24
| Data Region |
DID|D|DID|D|DID| [DID|D|D|D|D(DID| |DID|D[D|D|DIDID| |D|D|DI|D|D[D|D|D
32 39 40 47 48 95 56 63

Called the inode table

With 256-byte inodes, we can store 16 inodes in
a block, so totally 80 files can be stored in VSFS

But we can simply scale VSFS to a larger disk

CS 423: Operating Systems Design

VSFS — Bitmaps (metadata)

Need allocation structures
Free lists — linked list is an option

Most commonly used: bitmap (ib, db)

- Inodes Data Region |

_ ECTTTAT [D[O[D[D[D[DID]D] [DID[D[DID[DIDID] [DID[DIDID[DIDID]

0 /7 8 15 16 23 24 31
Data Region

[D[D[D]DID[D[D[D] [D]DIDIDIDIDID]D] [D[D[D[DIDIDIDID] [DIDIDIDID[DIDID]
32 39 40 47 48 95 56 63

We actually don’t need a block for bitmap

CS 423: Operating Systems Design

VSFS — (metadata)

What’s stored in the first block?

CS 423: Operating Systems Design

VSFS — Superblock (metadata) |

- Inodes |

Data Region

[SERCETITITTT DID[D
0 7 8

15 16
Data Region

23 24

DIDD

D[D[D[D[D] [DID[D

D[D[D[D[D] [DID[D

DID[D[D[D] [D[D[D

32

39 40

47 48

99 56

How many data blocks, how many inode blocks

Inode table starting block #

CS 423: Operating Systems Design

The Inode Table (Closeup)
! ! ! " iblock 0 ! iblock 1 ! iblock 2 iblock 3 : iblock 4

0|1]2]3[16[17|18]19|32[33|34|35/48/49[50/51|64/65/66/67
. 4|5/ 6|7 |20[21|2223]36[37|38|3952|53[54/55|68]69[70|71
JCIC SRR SN 15 11 0[1 724125126127 4014 1[4 2}43]56/57|5859(72/737475
12[13[14]15[28[29[30[31}44]45[46[47]60[6 1/62]63[7677[78[79)]

OKB 4KB 8KB 12KB 16KB 20K 24KB 28KB 32KB

Super

Implicitly know the block/sector number

CS 423: Operating Systems Design

Size Name What is this inode field for?
2 mode can this file be read /written/executed?
2 uid who owns this file?
4 size how many bytes are in this file?
4 time what time was this file last accessed?
4 ctime what time was this file created?
4 mtime what time was this file last modified?
4 dtime what time was this inode deleted?
2 gid which group does this file belong to?
2 links_.count how many hard links are there to this file?
4 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?
4 osdl an OS-dependent field
60 block a set of disk pointers (15 total)
4 generation file version (used by NFES)
4 file_acl a new permissions model beyond mode bits
4 dir_acl called access control lists

CS 423: Operating Systems Design

Inode Array

Inode

File Metadata

Direct Pointer

DP

DP

DP

DP

DP

DP

DP

DP

DP

DP

Direct Pointer

Indirect Pointer

Dbl. Indirect Ptr.

~.| Tripl. Indirect Ptr.

CS 423: Operating Systems Design

Triple Double
Indirect Indirect Indirect Data
Blocks Blocks Blocks Blocks
.. R
... >
... >
.............................. X
Seeseesssessesssesresessireseessesssesssessesresirettasernrsennns > seeeeeed
.......................... N [SRR HO—
ot T SRR N [OO >
.............................. > s s
SN o B SO N T ,
................... N
................... N [IO

cxtent based approach

No pointer for every block
<Starting block, num blocks>

Adv compared to pointer approach?

Cons?

CS 423: Operating Systems Design

L inked Files

« File header points to 1st
block on disk

« Each block points to next

= Pros

= Can grow files dynamically
= Free list is similar to a file

« Cons
= random access: horrible
= unreliable: losing a block
means losing the rest

CS 423: Operating Systems Design

File \header
\

null

| inked Allocation

Directory

-

File

Address —

] Data
Data

Data

v

" Data

Vi

\

\

CS 423: Operating Systems Design

MS File Allocation Table (FAT) | |

« Linked list index structure

= Simple, easy to implement

« Still widely used (e.qg., thumb drives)
= File table:

= Linear map of all blocks on disk

= Each file a linked list of blocks

CS 423: Operating Systems Design

MS File Allocation Table (FAT) | |

MFT

OWVWoONOUNIPAWN=_OOVONOUNIAWN—O

N » 3 3 3 3 LY 3 3 3 3

CS 423: Operating Systems Design

Data Blocks

file 9 block 3

ATA]

e
— 0|l
on
o)

o
~ |

file 12 block 1

file 9 block 4

MS File Allocation Table (FAT) | |

Main [C:] Properties

. Pros: ot 15 |she
. Easy to find free block @,”
« Easy to append to a file :
. Easy to delete a file w

. Cons: [egt———
« Small file access is slow
« Random access is very slow ——

= Fragmentation
= File blocks for a given file may be scattered
= Files in the same directory may be scattered
= Problem becomes worse as disk fills

CS 423: Operating Systems Design

Small files: Inlined

= Really small files
= NO need to have a separate data block

« Inline them into the inode — can access
with fewer disk accesses

CS 423: Operating Systems Design

Directory Organization

inum | reclen | strlen | name
3 12 2
2 12 3 .-
12 12 e foo
13 12 : bar
24 3B 28 focbar 1s_a_ pretty longname

What is the inode of this directory?

Where is the directory’s content stored?

CS 423: Operating Systems Design

Next Lecture

Continue more with FS internals and
implementation

Also, FFS/LFS/Journaling
Beyond: RAID

CS 423: Operating Systems Design

	Slide 1
	Slide 2: DISKS  FILES
	Slide 3
	Slide 4: What is a File?
	Slide 5
	Slide 6: File API (attempt 1)
	Slide 7: File API (attempt 1)
	Slide 8: Paths
	Slide 9
	Slide 10: Paths
	Slide 11
	Slide 12: File API (attempt 2)
	Slide 13: File Descriptor (fd)
	Slide 14: File API (attempt 3)
	Slide 15: FD Table (xv6)
	Slide 16: FD offsets
	Slide 17: FD Offsets
	Slide 18: LSEEK and READ
	Slide 19: Entries in OFT
	Slide 20: Shared Entries in OFT
	Slide 21: Shared Entries in OFT
	Slide 22
	Slide 23: DUP
	Slide 24: Fsync
	Slide 25: Rename
	Slide 26: Rename
	Slide 27
	Slide 28: Deleting Files
	Slide 29: Symbolic or soft links
	Slide 30: Atomic File Update
	Slide 31: FILE SYSTEM IMPLEMENTATION
	Slide 32: VSFS
	Slide 33: VSFS
	Slide 34: VSFS – Data blocks
	Slide 35: VSFS – Inodes (metadata)
	Slide 36: VSFS – Bitmaps (metadata)
	Slide 37: VSFS – (metadata)
	Slide 38: VSFS – Superblock (metadata)
	Slide 39: INODE
	Slide 40: INODE
	Slide 41: Direct and Indirect Pointers
	Slide 42: Extent based approach
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Directory Organization
	Slide 50: Next Lecture

