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Y et another level of virtualization!? ][

* The OS has thus far served as the illusionist,
tricking unsuspecting applications into thinking
they have their own private CPU and a large
virtual memory, while secretly switching
between applications and sharing memory.

* Why do we need another level of indirection
(virtualization)?
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Y et another level of virtualization!?
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Y et another level of virtualization!? ][
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You can build your own cloud

= openstack.
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Containerization vs Virtualization ][

e What’s the difference from containers and
virtual machines?

* How about chroot, jails, and zones?

e What is the difference between Xen and
VMWare ESX?
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Different Types of Virtual Machines ][

* What are they virtualizing?
e VM
e JVM
e LLVM
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Virtualization

* Creation of an isomorphism that maps a virtual

guest system to a real host:

— Maps guest state S to host state V(S)

— For any sequence of operations on the guest that
changes guest state S1 to S2, there is a sequence of
operations on the host that maps state V(S1) to V(S52)
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Important Interfaces

* Application programmer interface (API):
— High-level language library such as 1ibc

* Application binary interface (ABI):
— User instructions (User ISA)
— System calls

e Hardware-software interface:
— Instruction set architecture (ISA)

CS 423: Operating Systems Design



VWhat's a machine!

* Machine is an entity that provides an interface
— From the perspective of a language...
* Machine = Entity that provides the API
— From the perspective of a process...
* Machine = Entity that provides the ABI
— From the perspective of an operating system...
* Machine = Entity that provides the ISA
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What's a virtual machine?

* Virtual machine is an entity that emulates a guest

interface on top of a host machine
— Language view:
* Virtual machine = Entity that emulates an API (e.g., JAVA) on top of

another
* Virtualizing software = compiler/interpreter

— Process view:
* Machine = Entity that emulates an ABI on top of another
* Virtualizing software = runtime

— Operating system view:
* Machine = Entity that emulates an ISA
* Virtualizing software = virtual machine monitor (VMM)
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Purpose of a VM

e Emulation

— Create the illusion of having one type of machine on top
of another

* Replication (/ Multiplexing)
— Create the illusion of multiple independent smaller guest
machines on top of one host machine (e.g., for
security/isolation, or scalability/sharing)

* Optimization
— Optimize a generic guest interface for one type of host
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Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.
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Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)
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Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)
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Ex |- Multiprogramming 1

* Emulate what interface?
* For what purpose?
* On top of what?
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Ex |+ Emulation [ (

* Emulate one ABI on top of another (early emulation
wants to run Windows apps on MacOS)
— Emulate an Intel 1A-32 running Windows on top of
PowerPC running MacOS (i.e., run a process compiled

for IA-32/Windows on PowerPC/MacOS)

* Interpreters: Pick one guest instruction at a time, update
(simulated) host state using a set of host instructions

* Binary translation: Do the translation in one step, not one
line at a time. Run the translated binary
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Writing an Emulator

* Create a simulator data structure to represent:

— Guest memory
* Guest stack
* Guest heap

— Quest registers

* |[nspect each binary instruction (machine

instruction or system call)

— Update the data structures to reflect the effect of the
Instruction
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Fx2: Binary Optimization

* Emulate one ABI on top of itself for purposes of
optimization
— Run the process binary, collect profiling data, then

implement it more efficiently on top of the same
machine/OS interface.
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=x3: Language VMs

* Emulate one APl on top of a set of different ABIs
— Compile guest APl to intermediate form (e.g., JAVA
source to JAVA bytecode)
— Interpret the bytecode on top of different host ABIs

 Examples:

— JAVA
— Microsoft Common Language Infrastructure (CLI), the
foundation of .NET

CS 423: Operating Systems Design



Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)
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Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)
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System VMs

* Implement VMM (ISA emulation) on bare

hardware

— Efficient

— Must wipe out current operating system to install
— Must support drivers for VMM

* Implement VMM on top of a host OS (Hosted
VM)

— Less efficient
— Easy to install on top of host OS
— Leverages host OS drivers
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System VMs

* Implement VMM (ISA emulation) on bare

hardware BB el -
_ Efficient HYPERVISOR

— Must wipe out current operating system to install
— Must support drivers for VMM

* Implement VMM on top of a host OS (Hosted

VM) TYPE TWO
— Less efficient Hkaaiaai

— Easy to install on top of host OS
— Leverages host OS drivers
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atis Xen?
atis VirtualBox?
atis KUM/Qemu?
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[ axonomy

* Language VMs
— Emulate same API as host (e.g., application profiling?)
— Emulate different API than host (e.g., Java API)

* Process VMs

— Emulate same ABI as host (e.g., multiprogramming)
— Emulate different ABI than host (e.g., Java VM, MAME)

* System VMs

— Emulate same ISA as host (e.g., KVM, VBox, Xen)
— Emulate different ISA than host (e.g., MULTICS

simulator)
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Point of Clarification 1

« Emulation: General technique for performing any kind
of virtualization (API/ABI/ISA)

* Not to be confused with Emulator in the colloquial
sense (e.g., Video Game Emulator), which often refers

to ABIl emulation.
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Writing an Emulator

* Problem: Emulate guest ISA on host ISA
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Writing an Emulator

* Problem: Emulate guest ISA on host ISA

* Create a simulator data structure to represent:

— Guest memory

 Guest stack
* Guest heap

— Guest registers

* |nspect each binary instruction (machine

instruction or system call)

— Update the data structures to reflect the effect of the
Instruction
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EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation, switch on opcode

inst = code (PC)

opcode = extract_opcode (inst)

switch (opcode) {
case opcodel : call emulate_opcodel ()
case opcode? : call emulate_opcode?2 ()
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EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation

new inst = code (PC)
opcode = extract_opcode (inst)
routineCase = dispatch (opcode)
jump routineCase

routineCase call routine_address

jump new
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Threaded Interpretation... 1

[ body of emulate _opcodel ]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

[ body of emulate _opcode?2]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)

jump routine_address
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EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation, switch on opcode

inst = code (PC)

opcode = extract_opcode (inst)

switch (opcode) {
case opcodel : call emulate_opcodel ()
case opcode? : call emulate_opcode?2 ()
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EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation

new inst = code (PC)
opcode = extract_opcode (inst)
routineCase = dispatch (opcode)
jump routineCase

routineCase call routine_address

jump new
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Threaded Interpretation... 1

[ body of emulate _opcodel ]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

[ body of emulate _opcode?2]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)

jump routine_address
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Note: Extracting Opcodes |

e extract_opcode (inst)
— Opcode may have options
— Instruction must extract and combine several bit ranges in the machine
word
— Operands must also be extracted from other bit ranges

* Pre-decoding
— Pre-extract the opcodes and operands for all instructions in program.
— Put them on byte boundaries...

- =

— Also, musomeimGindwo program tosinteesatphgde
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Note: Extracting Opcodes |

0x1000: LW r1, 8(r2)
0x1004: ADD r3,r3,rl
0x1008: SW r3, 0(r4)

Example: MIPS Instruction Set

135

1 2 08
032

3 1 03
142

3 4 00

Ox10000: LW

0Ox10008: ADD

Ox10010: SW
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Direct [hreaded Impl.

* Replace opcode with address of emulating

routine
Routine _address07
1 2 08
Routine address08
3 1 03

Routine address37
3 4 00
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Binary [ ranslation

 Emulation:
— Guest code is traversed and instruction classes are
mapped to routines that emulate them on the target
architecture.

* Binary translation:
— The entire program is translated into a binary of
another architecture.
— Each binary source instruction is emulated by some
binary target instructions.

CS 423: Operating Systems Design



Challenges

 Can we really just read the source binary and
translate it statically one instruction at a time to

a target binary?
— What are some difficulties?

CS 423: Operating Systems Design



Challenges

* Code discovery and binary translation
— How to tell whether something is code or data?
— We encounter a jump instruction: Is word after the
jump instruction code or data?

* Code location problem
— How to map source program counter to target
program counter?
— Can we do this without having a table as long as the
program for instruction-by-instruction mapping?
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I hings to Notice

* You only need source-to-target program counter
mapping for locations that are targets of jJumps.
Hence, only map those locations.

* You always know that something is an instruction
(not data) in the source binary if the source program
counter eventually ends up pointing to it.

 The problem is: You do not know targets of jumps
(and what the program counter will end up pointing

to) at static analysis time!
— Why?
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Solution

* Incremental Pre-decoding and Translation
— As you execute a source binary block, translate it into a target
binary block (this way you know you are translating valid

instructions)
— Whenever you jump:
* If you jump to a new location: start a new target binary block, record
the mapping between source program counter and target program

counter in map table.
* If you jump to a location already in the map table, get the target

program counter from the table
— Jumps must go through an emulation manager. Blocks are
translated (the first time only) then executed directly thereafter
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Dynamic Basic Blocks

* Program is translated into chunks called “dynamic basic
blocks”, each composed of straight machine code of the

target architecture
— Block starts immediately after a jump instruction in the source

binary
— Block ends when a jump occurs
* At the end of each block (i.e., at jumps), emulation
manager is called to inspect jump destination and
transfer control to the right block with help of map table
(or create a new block and map table entry, if map miss)
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Dynamic Binary Translation [

Start with SPC

Look up SPC2>TPC in
map table

Yy

l

Translate new block

Branch to TPC and
execute block

Store new SPC>TPC
entry in table

A 4

Get SPC of next
block

Edit: The original automata didn’t execute the current block unless there was a hit!
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Optimizations

* Translation chaining
— The counterpart of threading in interpreters
— The first time a jump is taken to a new destination, go
through the emulation manager as usual
— Subsequently, rather than going through the
emulation manager at that jump (i.e., once

destination block is known), just go to the right place.
* What type of jumps can we do this with?
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Optimizations

* Translation chaining
— The counterpart of threading in interpreters

— The first time a jump is taken to a new destination, go
through the emulation manager as usual

— Subsequently, rather than going through the
emulation manager at that jump (i.e., once destination

block is known), just go to the right place.
* What type of jumps can we do this with?
* Fixed Destination Jumps Only!!!
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Register Indirect Jumps?

* Jump destination depends on value in register.

* Must search map table for destination value
(expensive operation)

* Solution?

— Caching: add a series of if statements, comparing register
content to common jump source program counter values
from past execution (most common first).

— If there is a match, jump to corresponding target program
counter location.

— Else, go to emulation manager.
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