CS 423

Operating System Design
Virtual Machines

Ramnatthan Alagappan
Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

Y et another level of virtualization!?][

* The OS has thus far served as the illusionist,
tricking unsuspecting applications into thinking
they have their own private CPU and a large
virtual memory, while secretly switching
between applications and sharing memory.

* Why do we need another level of indirection
(virtualization)?

CS 423: Operating Systems Design

et another level of virtualization?

P >~ M

Recycle Bin Steam BitLord

"i—.
gr - 3

AVG Free 8.5 Dan's Bitlord

Download

Foxit Reader HD_Audio

o B

LS Diablo II

M M

Malwarebyt... World of ;
Anti-Malware ~ Warcra... (CHYIUUARNI snwTanmnAn

8 G

Mozilla World of
Firefox Warcraft

1 &
m-“‘_'f Q a o Date created: 4/1/2005 7:49 AM
QuickTime Curse Client Size:

File System Options Help

s P R S
e, P e = 2

FPS: 60.02

bvaluation copy. Build /100

3:04 PM

Bovrdoads Bl ARIO6E.. | ~ ¢ |* 1D 10/9/2009

CS 423: Operating Systems Design 3

Y et another level of virtualization!?

j=J
ed Sep

2 10:55:27 BST 2009

etBSD,/i386 (Amnesiac) (console)

login: root

Password:

[Sep 2 10:56:07 login: ROOT LOGIN (root) ON console

Last login: Wed Sep 2 10:21:23 2009 on console

opyright (c) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, ZOr
2006, 2007, 2008, 2009 ~

QEMU]

The NetBSD Foundation, Inc. All rights reserved. 8’9°APP|iC3ti°nS Places System 08
opyright (c) 1982, 1986, 1989, 1991, 1993

(] System Monitor ==

The Regents of the University of California. All rights reserved. @
Monitor Edit View Help

etBSD 5.0.1 (GENERIC) #0: Thu Jul 30 01:39:11 UTC 2009 Start Here

elcome to NetBSD!? .

Terminal type is vt100. -
. . Register
e recommend creating a non-root account and using su(l) for root acce : .
(13 uname -a OpenSolaris Solaris
d —a

etBSD 5.0.1 NetBSD 5.0.1 (GENERIC) #0: Thu Jul 30 01:39:11 UTC 2009 _ Release OpenSolaris [:;velopment snv_121 X86
.netbsd.org:/home/builds/ab/netbsd-5-0-1-RELEASE/i386,200907292356Z-0b » Kernel Sun0S 5.11
?ds/db/]ltﬁLbSd*S*O*1*HELEHSE/SK‘L‘/SQS/(U‘L‘]I/138[)/(,‘UmplIE/GENERIC i386 T GNOME GNOME 2.26.3

Software

2y i
.~ Hardware

o ‘ Memory. 1023.6 MiB
1 ' S

A | System Status
ou nsta Available disk space: 2.1 GiB
Kubuntu

Processes | Resources | File Systems

opensolaris
N1l 4 opensoiatis

® Extended controls

Accelerometer Additional sensors
Location

Cellular

Battery "

Phone .

Directional pad

Fingerprint b

— o 4. T . .
= 09:58 am o
' 4 T b Wed, 2 Sep ® om
Virtual sensors \ .
|) Qemu | 3 oemu
Settings
Device rotation
Help O Rotate Move
L3
X 0.0
=7 7 Resulting Values
Accelerometer (m/s?): -0.43 9.15 3.49
o 0.0 Magnetometer (uT): 19.60 -9.40 43.63
4 4 Rotation ROTATION_O
. . ra .
» 1:49/4.08 La 5

CS 423: Operating Systems Design 4

Y et another level of virtualization!?][

CS 423: Operating Systems Design 5

You can build your own cloud

= openstack.

OPENSTACK-USER

& sSDK

OpenStackClient
Shade Python SDK

OPENSTACK-ADJACENTENABLERS
|ii:i|| CONTAINER SERVICES

Kuryr Fux

-
LS 23
..
=
-
<

Bold represents Core Functionality
Version 2018.05.00

L apachecloudstack’

] WEB FRONTEND

Horizon

OPENSTACK

¢ APIPROXIES

EC2API

L3} WORKLOAD PROVISIONING

Magnum Trow

~i
% APPLICATION LIFECYCLE

Murano Freezer

4t ORCHESTRATION
Heat Mistral Aodh
Senlin Zaqgar Blazar

Sahara Solum Masakari
== COMPUTE
Nova Zun

Qinling

*
oa’e NETWORKING
L]

j eARE METAL

-
= STORAGE

| SON_| | DNS | | servers B GPus | | FILE_|
Neutron Octavia Designate Ironic Cyborg Swift Cinder Manila
; - @B SHARED SERVICES - 3
Keystone Glance Barbican Searchlight Karbor

OPENSTACK-LIFECYCLEMANAGEMENT
9 PACKAGING RECIPES FOR...
RPM

— P DEPLOYMENT / LIFECYCLE TOOLS

Kolla-Ansible Kolla-K8s
TripleQ Bifrost

Ansible Puppet

Chef Charms Helm OCI containers

open source cloud computing

OPENSTACK-OPERATIONS

(® MONITORING TOOLS
Ceilometer

Monasca Panko

[0 OPTIMIZATION / POLICY TOOLS

Watcher Vitrage

Congress Rally

— [sal] BILLING / BUSINESS LOGIC —

CloudKitty

@ MULTI-REGION TOOLS

Tricircle

CS 423: Operating Systems Design

Containerization vs Virtualization][

e What’s the difference from containers and
virtual machines?

* How about chroot, jails, and zones?

e What is the difference between Xen and
VMWare ESX?

CS 423: Operating Systems Design

Different Types of Virtual Machines][

* What are they virtualizing?
e VM
e JVM
e LLVM

CS 423: Operating Systems Design

Virtualization

* Creation of an isomorphism that maps a virtual

guest system to a real host:

— Maps guest state S to host state V(S)

— For any sequence of operations on the guest that
changes guest state S1 to S2, there is a sequence of
operations on the host that maps state V(S1) to V(S52)

CS 423: Operating Systems Design

Important Interfaces

* Application programmer interface (API):
— High-level language library such as 1ibc

* Application binary interface (ABI):
— User instructions (User ISA)
— System calls

e Hardware-software interface:
— Instruction set architecture (ISA)

CS 423: Operating Systems Design

VWhat's a machine!

* Machine is an entity that provides an interface
— From the perspective of a language...
* Machine = Entity that provides the API
— From the perspective of a process...
* Machine = Entity that provides the ABI
— From the perspective of an operating system...
* Machine = Entity that provides the ISA

CS 423: Operating Systems Design

What's a virtual machine?

* Virtual machine is an entity that emulates a guest

interface on top of a host machine
— Language view:
* Virtual machine = Entity that emulates an API (e.g., JAVA) on top of

another
* Virtualizing software = compiler/interpreter

— Process view:
* Machine = Entity that emulates an ABI on top of another
* Virtualizing software = runtime

— Operating system view:
* Machine = Entity that emulates an ISA
* Virtualizing software = virtual machine monitor (VMM)

CS 423: Operating Systems Design

Purpose of a VM

e Emulation

— Create the illusion of having one type of machine on top
of another

* Replication (/ Multiplexing)
— Create the illusion of multiple independent smaller guest
machines on top of one host machine (e.g., for
security/isolation, or scalability/sharing)

* Optimization
— Optimize a generic guest interface for one type of host

CS 423: Operating Systems Design

Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

CS 423: Operating Systems Design

Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)

CS 423: Operating Systems Design

Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)

CS 423: Operating Systems Design

Ex |- Multiprogramming 1

* Emulate what interface?
* For what purpose?
* On top of what?

CS 423: Operating Systems Design

Ex |+ Emulation [(

* Emulate one ABI on top of another (early emulation
wants to run Windows apps on MacOS)
— Emulate an Intel 1A-32 running Windows on top of
PowerPC running MacOS (i.e., run a process compiled

for IA-32/Windows on PowerPC/MacOS)

* Interpreters: Pick one guest instruction at a time, update
(simulated) host state using a set of host instructions

* Binary translation: Do the translation in one step, not one
line at a time. Run the translated binary

CS 423: Operating Systems Design

Writing an Emulator

* Create a simulator data structure to represent:

— Guest memory
* Guest stack
* Guest heap

— Quest registers

* |[nspect each binary instruction (machine

instruction or system call)

— Update the data structures to reflect the effect of the
Instruction

CS 423: Operating Systems Design

Fx2: Binary Optimization

* Emulate one ABI on top of itself for purposes of
optimization
— Run the process binary, collect profiling data, then

implement it more efficiently on top of the same
machine/OS interface.

CS 423: Operating Systems Design

=x3: Language VMs

* Emulate one APl on top of a set of different ABIs
— Compile guest APl to intermediate form (e.g., JAVA
source to JAVA bytecode)
— Interpret the bytecode on top of different host ABIs

 Examples:

— JAVA
— Microsoft Common Language Infrastructure (CLI), the
foundation of .NET

CS 423: Operating Systems Design

Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)

CS 423: Operating Systems Design

Types of VMs

* Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

— Process/language virtual machines (emulate ABI/API)
— System virtual machines (emulate ISA)

CS 423: Operating Systems Design

System VMs

* Implement VMM (ISA emulation) on bare

hardware

— Efficient

— Must wipe out current operating system to install
— Must support drivers for VMM

* Implement VMM on top of a host OS (Hosted
VM)

— Less efficient
— Easy to install on top of host OS
— Leverages host OS drivers

CS 423: Operating Systems Design

System VMs

* Implement VMM (ISA emulation) on bare

hardware BB el -
_ Efficient HYPERVISOR

— Must wipe out current operating system to install
— Must support drivers for VMM

* Implement VMM on top of a host OS (Hosted

VM) TYPE TWO
— Less efficient Hkaaiaai

— Easy to install on top of host OS
— Leverages host OS drivers

CS 423: Operating Systems Design

atis Xen?
atis VirtualBox?
atis KUM/Qemu?

CS 423: Operating Systems Design

N . A N A
Dom 0
Ll Dom U Native
0S 0S software | = Guest Guest Guest Guest
back end VM VM Application Application
1 front end 1 front end

Device

drivers. o]

...............................

Host OS Kernel

Xen Hypervisor

: Linux Kernel |

i e W e — B | R—— 1

HARDWARE HARDWARE HARDWARE

Xen KVM QEMU

CS 423: Operating Systems Design

[axonomy

* Language VMs
— Emulate same API as host (e.g., application profiling?)
— Emulate different API than host (e.g., Java API)

* Process VMs

— Emulate same ABI as host (e.g., multiprogramming)
— Emulate different ABI than host (e.g., Java VM, MAME)

* System VMs

— Emulate same ISA as host (e.g., KVM, VBox, Xen)
— Emulate different ISA than host (e.g., MULTICS

simulator)

CS 423: Operating Systems Design

Point of Clarification 1

« Emulation: General technique for performing any kind
of virtualization (API/ABI/ISA)

* Not to be confused with Emulator in the colloquial
sense (e.g., Video Game Emulator), which often refers

to ABIl emulation.

CS 423: Operating Systems Design

Writing an Emulator

* Problem: Emulate guest ISA on host ISA

CS 423: Operating Systems Design

Writing an Emulator

* Problem: Emulate guest ISA on host ISA

* Create a simulator data structure to represent:

— Guest memory

 Guest stack
* Guest heap

— Guest registers

* |nspect each binary instruction (machine

instruction or system call)

— Update the data structures to reflect the effect of the
Instruction

CS 423: Operating Systems Design

EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation, switch on opcode

inst = code (PC)

opcode = extract_opcode (inst)

switch (opcode) {
case opcodel : call emulate_opcodel ()
case opcode? : call emulate_opcode?2 ()

CS 423: Operating Systems Design

EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation

new inst = code (PC)
opcode = extract_opcode (inst)
routineCase = dispatch (opcode)
jump routineCase

routineCase call routine_address

jump new

CS 423: Operating Systems Design

Threaded Interpretation... 1

[body of emulate _opcodel]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

[body of emulate _opcode?2]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)

jump routine_address

CS 423: Operating Systems Design

EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation, switch on opcode

inst = code (PC)

opcode = extract_opcode (inst)

switch (opcode) {
case opcodel : call emulate_opcodel ()
case opcode? : call emulate_opcode?2 ()

CS 423: Operating Systems Design

EFmulation

* Problem: Emulate guest ISA on host ISA
* Solution: Basic Interpretation

new inst = code (PC)
opcode = extract_opcode (inst)
routineCase = dispatch (opcode)
jump routineCase

routineCase call routine_address

jump new

CS 423: Operating Systems Design

Threaded Interpretation... 1

[body of emulate _opcodel]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

[body of emulate _opcode?2]

inst = code (PC)

opcode = extract_opcode (inst)
routine_address = dispatch (opcode)

jump routine_address

CS 423: Operating Systems Design

Note: Extracting Opcodes |

e extract_opcode (inst)
— Opcode may have options
— Instruction must extract and combine several bit ranges in the machine
word
— Operands must also be extracted from other bit ranges

* Pre-decoding
— Pre-extract the opcodes and operands for all instructions in program.
— Put them on byte boundaries...

- =

— Also, musomeimGindwo program tosinteesatphgde

CS 423: Operating Systems Design

Note: Extracting Opcodes |

0x1000: LW r1, 8(r2)
0x1004: ADD r3,r3,rl
0x1008: SW r3, 0(r4)

Example: MIPS Instruction Set

135

1 2 08
032

3 1 03
142

3 4 00

Ox10000: LW

0Ox10008: ADD

Ox10010: SW

CS 423: Operating Systems Design

Direct [hreaded Impl.

* Replace opcode with address of emulating

routine
Routine _address07
1 2 08
Routine address08
3 1 03

Routine address37
3 4 00

CS 423: Operating Systems Design

Binary [ranslation

 Emulation:
— Guest code is traversed and instruction classes are
mapped to routines that emulate them on the target
architecture.

* Binary translation:
— The entire program is translated into a binary of
another architecture.
— Each binary source instruction is emulated by some
binary target instructions.

CS 423: Operating Systems Design

Challenges

 Can we really just read the source binary and
translate it statically one instruction at a time to

a target binary?
— What are some difficulties?

CS 423: Operating Systems Design

Challenges

* Code discovery and binary translation
— How to tell whether something is code or data?
— We encounter a jump instruction: Is word after the
jump instruction code or data?

* Code location problem
— How to map source program counter to target
program counter?
— Can we do this without having a table as long as the
program for instruction-by-instruction mapping?

CS 423: Operating Systems Design

I hings to Notice

* You only need source-to-target program counter
mapping for locations that are targets of jJumps.
Hence, only map those locations.

* You always know that something is an instruction
(not data) in the source binary if the source program
counter eventually ends up pointing to it.

 The problem is: You do not know targets of jumps
(and what the program counter will end up pointing

to) at static analysis time!
— Why?

CS 423: Operating Systems Design

Solution

* Incremental Pre-decoding and Translation
— As you execute a source binary block, translate it into a target
binary block (this way you know you are translating valid

instructions)
— Whenever you jump:
* If you jump to a new location: start a new target binary block, record
the mapping between source program counter and target program

counter in map table.
* If you jump to a location already in the map table, get the target

program counter from the table
— Jumps must go through an emulation manager. Blocks are
translated (the first time only) then executed directly thereafter

CS 423: Operating Systems Design

Dynamic Basic Blocks

* Program is translated into chunks called “dynamic basic
blocks”, each composed of straight machine code of the

target architecture
— Block starts immediately after a jump instruction in the source

binary
— Block ends when a jump occurs
* At the end of each block (i.e., at jumps), emulation
manager is called to inspect jump destination and
transfer control to the right block with help of map table
(or create a new block and map table entry, if map miss)

CS 423: Operating Systems Design

Dynamic Binary Translation [

Start with SPC

Look up SPC2>TPC in
map table

Yy

l

Translate new block

Branch to TPC and
execute block

Store new SPC>TPC
entry in table

A 4

Get SPC of next
block

Edit: The original automata didn’t execute the current block unless there was a hit!

CS 423: Operating Systems Design 48

Optimizations

* Translation chaining
— The counterpart of threading in interpreters
— The first time a jump is taken to a new destination, go
through the emulation manager as usual
— Subsequently, rather than going through the
emulation manager at that jump (i.e., once

destination block is known), just go to the right place.
* What type of jumps can we do this with?

CS 423: Operating Systems Design

Optimizations

* Translation chaining
— The counterpart of threading in interpreters

— The first time a jump is taken to a new destination, go
through the emulation manager as usual

— Subsequently, rather than going through the
emulation manager at that jump (i.e., once destination

block is known), just go to the right place.
* What type of jumps can we do this with?
* Fixed Destination Jumps Only!!!

CS 423: Operating Systems Design

Register Indirect Jumps?

* Jump destination depends on value in register.

* Must search map table for destination value
(expensive operation)

* Solution?

— Caching: add a series of if statements, comparing register
content to common jump source program counter values
from past execution (most common first).

— If there is a match, jump to corresponding target program
counter location.

— Else, go to emulation manager.

CS 423: Operating Systems Design

