
CS 423: Operating Systems Design

Ramnatthan Alagappan
Tianyin Xu

CS 423
Operating System Design

Virtual Memory

* Thanks for Prof. Adam Bates for the slides.

CS 423: Operating Systems Design

History: Summary

2

Overlay Fixed
Partitions Relocation

s No multi-
programming
support

s Supports multi-
programming

s Internal
fragmentation

s No internal
fragmentation

s Introduces
external
fragmentation

CS 423: Operating Systems Design

Virtual Memory

3

ც Provide user with virtual memory that is as big as
user needs

ც Store virtual memory on disk
ც Cache parts of virtual memory being used in real

memory
ც Load and store cached virtual memory without user

program intervention

CS 423: Operating Systems Design

Paging

4

1
2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

CS 423: Operating Systems Design

Paging

5

3 1
2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

5HTXHVW�3DJH��f

CS 423: Operating Systems Design 6

Paging

3 1
1 2

3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

5HTXHVW�3DJH��f

CS 423: Operating Systems Design 7

Paging

3 1
1
6

2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

5HTXHVW�3DJH��f

CS 423: Operating Systems Design 8

Paging

3 1
1
6

2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

2

5HTXHVW�3DJH��f

CS 423: Operating Systems Design 9

Paging
5HTXHVW�3DJH����6ZDS�3DJH���WR�'LVN�)LUVWf

3 1
1
6

2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

2

CS 423: Operating Systems Design 10

Paging
5HTXHVW�3DJH����f�QRZ�ORDG�3DJH���LQWR�0HPRU\�

3 1

6
2
3
4

Memory

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

Page Table
VM Frame

2

8

CS 423: Operating Systems Design

Page Mapping
Hardware

12

Contents(P,D)

Contents(F,D)

P D

F D

3ĺ)

0
1
0
1
1
0
1

Page Table
Virtual MemoryVirtual Address (P,D)

Physical Address (F,D)

P

F

D

D

4

Physical Memory

CS 423: Operating Systems Design

Page Mapping
Hardware

13

Contents(4006)

Contents(5006)

004 006

005 006

�ĺ�

0
1
0
1
1
0
1

Page Table
Virtual Memory

Physical Memory

Virtual Address (004006)

Physical Address (F,D)

004

005

006

006

4

Page size 1000
Number of Possible Virtual Pages 1000
Number of Page Frames 8

CS 423: Operating Systems Design

Page Faults

14

ც Access a virtual page that is not mapped into
any physical page
ც A fault is triggered by hardware

ც 3DJH�IDXOW�KDQGOHU��LQ�26¶V�90�VXEV\VWHP�
ც Find if there is any free physical page available

ც If no, evict some resident page to disk (swapping space)
ც Allocate a free physical page
ც Load the faulted virtual page to the prepared physical

page
ც Modify the page table

CS 423: Operating Systems Design

Reasoning about Page Tables

15

ც On a 32 bit system we have 2^32 B virtual address space
ც i.e., a 32 bit register can store 2^32 values

ც # of pages are 2n �H�J�������%����.%����.%����.%«�
ც Given a page size, how many pages are needed?

ც H�J���,I���.%�SDJHV���A���%���WKHQ��A����A�� «
ც 2^20 pages required to represent the address space

ც But! each page entry takes more than 1 Byte of space to
represent.
ც suppose page table entry is 4 bytes (Why?)
ც (2*2) * 2^ 20 = 4 MB of space required to represent our

page table in physical memory.

CS 423: Operating Systems Design

Paging Issues

16

ც Page size is 2n

ც usually 512 bytes, 1 KB, 2 KB, 4 KB, or 8 KB
ც E.g. 32 bit VM address may have 220 (1 MB) pages with

4k (212) bytes per page
ც Page table:

ც 220 page entries take 222 bytes (4 MB)
ც Must map into real memory
ც Page Table base register must be changed for context

switch
ც No external fragmentation; internal fragmentation on

last page only

CS 423: Operating Systems Design

Translation Lookaside
Buffers

17

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#

Optimization:

CS 423: Operating Systems Design 18

ც If a virtual address is presented to MMU, the
hardware checks TLB by comparing all entries
simultaneously (in parallel).

ც If match is valid, the page is taken from TLB
without going through page table.

ც If match is not valid
ც MMU detects miss and does a page table lookup.
ც It then evicts one page out of TLB and replaces it

with the new entry, so that next time that page is
found in TLB.

Translation Lookaside
Buffers

CS 423: Operating Systems Design 19

Translation Lookaside
Buffers

ც What TLB entry to be replaced?
ც Random
ც Least Recently Used (LRU)

ც What happens on a context switch?
ც Invalidate the entire TLB contents

ც What happens when changing a page table
entry?
ც Change the entry in memory
ც Invalidate the TLB entry

Issues:

CS 423: Operating Systems Design 20

Translation Lookaside
Buffers

Effective Access Time:

ც TLB lookup time = V time unit
ც Memory cycle = m µs
ც TLB Hit ratio = K
ც Effective access time

ც Eat = (m + V) K���(2m + V)(1 ± K)
ც Eat = 2m + V ± m K

1RWH��'RHVQ¶W�FRQVLGHU�SDJH�IDXOWV��+RZ�ZRXOG�ZH�H[WHQG"

CS 423: Operating Systems Design

Question

21

Applications might make sparse use of their
virtual address space. How can we make our
page tablesmore efficient?

CS 423: Operating Systems Design

Multi-level Page Tables

22

Directory
...

pte
...

...

...

dir table offset

Virtual address

What does this buy us?

CS 423: Operating Systems Design

Multi-level Page Tables

23

Directory
...

pte
...

...

...

dir table offset

Virtual address

What does this buy us?
Answer: Sparse address spaces, and easier paging

CS 423: Operating Systems Design 24

ც A logical address (on 32-bit x86 with 4k page size)
is divided into
ც A page number consisting of 20 bits
ც A page offset consisting of 12 bits

ც Divide the page number into
ც A 10-bit page directory
ც A 10-bit page number

Multi-level Page Tables
Example: Addressing in a Multi-level Page Table system.

CS 423: Operating Systems Design

Multi-level Paging
Performance

25

Since each level is stored as a separate
table in memory, converting a logical
address to a physical one with an n-level
page table may take n+1 memory accesses.
Why?

CS 423: Operating Systems Design

Question

26

In 64-bit system, up to 2^52 PT entries.
2^52 ~= 1,000,000,000,000,000
« bro, can I borrow some RAM?

CS 423: Operating Systems Design

Inverted Page Tables

27

ც Hash the process ID and virtual page number to get an index into the HAT.
ც Look up a Physical Frame Number in the HAT.
ც Look at the inverted page table entry, to see if it is the right process ID and virtual page

number. If it is, you're done.
ც If the PID or VPN does not match, follow the pointer to the next link in the hash chain. Again,

if you get a match then you're done; if you don't, then you continue. Eventually, you will either
get a match or you will find a pointer that is marked invalid. If you get a match, then you've
got the translation; if you get the invalid pointer, then you have a miss.

CS 423: Operating Systems Design

Paging Policies

28

ც Fetch Strategies
ც When should a page be brought into primary (main)

memory from secondary (disk) storage.
ც Placement Strategies

ც When a page is brought into primary storage, where is it
to be put?

ც Replacement Strategies
ც Which page in primary storage is to be removed when

some other page or segment is to be brought in and
there is not enough room.

CS 423: Operating Systems Design

Fetch: Demand Paging

29

ც Algorithm never brings a page into primary
memory until its needed.
1. Page fault
2. Check if a valid virtual memory address. Kill job if not.
3. Find a free page frame.
4. Map address into disk block and fetch disk block into

page frame. Suspend user process.
5. When disk read finished, add vm mapping for page

frame.
6. Restart instruction.

CS 423: Operating Systems Design

Demand Paging
Example

30

Load M i

Free frame

Page
table

VM

ref fault

CS 423: Operating Systems Design

Page Replacement

31

1. Find location of page on disk
2. Find a free page frame

1. If free page frame use it
2. Otherwise, select a page frame using the page

replacement algorithm
3. Write the selected page to the disk and update any

necessary tables
3. Read the requested page from the disk.
4. Restart instruction.

CS 423: Operating Systems Design

Issue: Eviction

32

ც Hopefully, kick out a less-useful page
ც 'LUW\�SDJHV�UHTXLUH�ZULWLQJ��FOHDQ�SDJHV�GRQ¶W

ც Hardware has a dirty bit for each page frame indicating this
page has been updated or not

ც :KHUH�GR�\RX�ZULWH"�7R�³VZDS�VSDFH´�RQ�GLVN�
ც *RDO��NLFN�RXW�WKH�SDJH�WKDW¶V�OHDVW�XVHIXO
ც Problem: how do you determine utility?

ც Heuristic: temporal locality exists
ც .LFN�RXW�SDJHV�WKDW�DUHQ¶W�OLNHO\�WR�EH�XVHG�DJDLQ

CS 423: Operating Systems Design

Terminology

33

ც Reference string: the memory reference
sequence generated by a program.

ც Paging ± moving pages to (from) disk
ც Optimal ± the best (theoretical) strategy
ც Eviction ± throwing something out
ც Pollution ± bringing in useless pages/lines

CS 423: Operating Systems Design

Page Replacement
Strategies

34

ც The Principle of Optimality
ც Replace the page that will not be used the most time in the future.

ც Random page replacement
ც Choose a page randomly

ც FIFO - First in First Out
ც Replace the page that has been in primary memory the longest

ც LRU - Least Recently Used
ც Replace the page that has not been used for the longest time

ც LFU - Least Frequently Used
ც Replace the page that is used least often

ც Second Chance
ც An approximation to LRU.

CS 423: Operating Systems Design

Principle of Optimality

35

ც Description:
ც Assume that each page can be labeled with the number of

instructions that will be executed before that page is first
referenced, i.e., we would know the future reference string
for a program.

ც Then the optimal page algorithm would choose the page
with the highest label to be removed from the memory.

ც Impractical because it needs to know future references

CS 423: Operating Systems Design

Optimal Example

36

12 references,
7 faults

CS 423: Operating Systems Design

FIFO

37

12 references,
9 faults

CS 423: Operating Systems Design

Average Paging
Behavior

38

As number of page frames increases, we can
expect the number of page faults to decrease.

CS 423: Operating Systems Design

Belady's Anomaly (FIFO)

39

As the number of
page frames
increase, so does the
fault rate.

12 references,
10 faults

FIFO with 4
physical pages

CS 423: Operating Systems Design

LRU

40

12 references,
10 faults

CS 423: Operating Systems Design

Least Recently Used (LRU)
Issues

41

ც +RZ�WR�WUDFN�³UHFHQF\´"
ც use time

ც record time of reference with page table entry
ც use counter as clock
ც search for smallest time.

ც use stack
ც remove reference of page from stack (linked list)
ც push it on top of stack

ც both approaches require large processing
overhead, more space, and hardware support.

CS 423: Operating Systems Design

Second Chance

42

ც Only one reference bit in the page table entry.
ც 0 initially
ც 1 When a page is referenced

ც pages are kept in FIFO order using a circular list.
ც &KRRVH�³YLFWLP´�WR�HYLFW

ც Select head of FIFO
ც If page has reference bit set, reset bit and select next page

in FIFO list.
ც keep processing until you reach page with zero reference bit

and page that one out.
ც System V uses a variant of second chance

CS 423: Operating Systems Design

Second Chance Example

43

12 references
9 faults

CS 423: Operating Systems Design

Thrashing

44

ც Computations have locality.
ც As page frames decrease, the page

frames available are not large enough to
contain the locality of the process.

ც The processes start faulting heavily.
ც Pages that are read in, are used and

immediately paged out.

CS 423: Operating Systems Design

Thrashing & CPU
Utilization

45

ც As the page rate goes up, processes get suspended on
page out queues for the disk.

ც the system may try to optimize performance by starting
new jobs.

ც starting new jobs will reduce the number of page frames
available to each process, increasing the page fault
requests.

ც system throughput plunges.

CS 423: Operating Systems Design

Working Set

46

ც the working set model assumes
locality.

ც the principle of locality
states that a program
clusters its access to data
and text temporally.

ც As the number of page frames
increases above some
threshold, the page fault rate
will drop dramatically.

CS 423: Operating Systems Design

Page Size
Considerations

47

ც Small pages
ც Reason:

ც Locality of reference tends to be small (256)
ც Less fragmentation

ც Problem: require large page tables
ც Large pages

ც Reason
ც Small page table
ც I/O transfers have high seek time, so better to transfer more data

per seek
ც Problem: Internal fragmentation, needless caching

