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What We will Learn Today
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• Multi-Level Feedback Queue (MLFQ) Scheduler

• Linux Schedulers

• Early Linux Schedulers

• O(N), O(1) Schedulers

• Completely Fair Scheduler (CFS)

• Multi-processor Scheduling
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“CPU scheduling is not planning; there is not 
an optimal solution. Rather CPU scheduling is 
about balancing goals and making difficult 
tradeoffs.”                   

-- Joseph T. Meehean

Principles
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What Are Scheduling Goals?
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• What are the goals of a scheduler?

• Linux Scheduler’s Goals:

■ Generate illusion of concurrency

■ Maximize resource utilization (e.g., mix CPU and 
I/O bound processes appropriately)

■ Meet needs of both I/O-bound and CPU-bound 
processes

■ Give I/O-bound processes better interactive response

■ Do not starve CPU-bound processes

■ Support Real-Time (RT) applications
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Multi-Level Feedback Queue
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Why is MLFQ a good design?
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• How to design a scheduler that both minimizes 
response time for interactive jobs while also 
minimizing turnaround time without a priori 
knowledge of job length?

• Yes, SJF – the assumption is to know which is the 
“shortest..” 

• It’s just very hard to know in advance.

• Sometimes processes/threads could try to game 
(we will see an example).
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Why is MLFQ a good design?
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• The Key Idea

• Dynamically adjusting the priority level based on 
observing the behavior of the processes/threads

• Basic Design

• When a job enters the system, it is placed at the highest 
priority (the topmost queue).

• If a job uses up an entire time slice while running, its 
priority is reduced (i.e., it moves down one queue).

• If a job gives up the CPU before the time slice is up, it stays 
at the same priority level.



CS 423: Operating Systems Design

Basic Design
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Job 1 Job 2

High
priority

Low
priority

time
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Basic Design
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• because it doesn’t know whether a job will be a short job or a 
long-running job, it first assumes it might be a short job, thus 
giving the job high priority. If it actually is a short job, it will run 
quickly and complete; if it is not a short job, it will slowly move 
down the queues, and thus soon prove itself to be a long-
running more batch-like process.
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Limitations?
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• Starvation

• A process changing its characteristics

• Gaming the scheduler
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Priority Boost
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• After some time period S, move all the jobs in the 
system to the topmost queue
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Better Accounting
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• Once a job uses up its time allotment at a given level 
(regardless of how many times it has given up the 
CPU), its priority is reduced (i.e., it moves down one 
queue).



CS 423: Operating Systems Design

Sounds perfect?
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• How many queues should there be? 

• How big should the time slice be per queue? 

• How often should priority be boosted in order to 
avoid starvation and account for changes in behavior?
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Early Linux Schedulers
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■ Linux 1.2: circular queue w/ round-robin policy.
■ Simple and minimal.
■ Did not meet many of the aforementioned goals

■ Linux 2.2: introduced scheduling classes (real-
time, non-real-time).

/* Scheduling Policies

*/

#define SCHED_OTHER  0 // Normal user tasks (default)

#define SCHED_FIFO   1 // RT: Will almost never be preempted

#define SCHED_RR     2 // RT: Prioritized RR queues
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Two Fundamental Mechanisms…

■ Prioritization

■ Resource partitioning

Why 2 RT mechanisms?
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Prioritization
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SCHED_FIFO

■ Used for real-time processes

■ Conventional preemptive fixed-priority 
scheduling

■ Current process continues to run until it ends or a 
higher-priority real-time process becomes runnable

■ Same-priority processes are scheduled FIFO
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Partitioning
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SCHED_RR

■ Used for real-time processes

■ CPU “partitioning” among same priority 
processes

■ Current process continues to run until it 
ends or its time quantum expires

■ Quantum size determines the CPU share

■ Processes of a lower priority run when no 
processes of a higher priority are present 
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Linux 2.4 Scheduler
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■ 2.4: O(N) scheduler.
■ Epochs → slices: when blocked before the slice 

ends, half of the remaining slice is added in the 
next epoch.

■ Simple.
■ Lacked scalability.
■ Weak for real-time systems.
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Linux 2.6 Scheduler
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■ O(1) scheduler

■ Tasks are indexed according to their priority 
[0,139]

■ Real-time [0, 99]
■ Non-real-time [100, 139]
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SCHED_NORMAL
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■ Used for non real-time processes

■ Complex heuristic to balance the needs of I/O and CPU centric 
applications

■ Processes start at 120 by default

■ Static priority
■ A “nice” value: 19 to -20.
■ Inherited from the parent process
■ Altered by user (negative values require special permission)

■ Dynamic priority
■ Based on static priority and applications characteristics 
(interactive or CPU-bound)

■ Favor interactive applications over CPU-bound ones

■ Timeslice is mapped from priority
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SCHED_NORMAL
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■ Used for non real-time processes

■ Complex heuristic to balance the needs of I/O and CPU centric 
applications

■ Processes start at 120 by default

■ Static priority
■ A “nice” value: 19 to -20.
■ Inherited from the parent process
■ Altered by user (negative values require special permission)

■ Dynamic priority
■ Based on static priority and applications characteristics 
(interactive or CPU-bound)

■ Favor interactive applications over CPU-bound ones

■ Timeslice is mapped from priority

Static Priority: Handles assigned task priorities

Dynamic Priority: Favors interactive tasks

Combined, these mechanisms govern CPU 
access in the SCHED_NORMAL scheduler.
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SCHED_NORMAL Heuristic
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if (static priority < 120)
Quantum = 20 × (140 – static priority)

else
Quantum = 5 × (140 – static priority)

(in ms)

Higher priority → Larger quantum

How does a static priority translate to real CPU access?
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Description
Static 

priority
Nice 

value
Base time 

quantum

Highest static 
priority

100 -20 800 ms

High static 
priority

110 -10 600 ms

Default static 
priority

120 0 100 ms

Low static 
priority

130 +10 50 ms

Lowest static 
priority

139 +19 5 ms

SCHED_NORMAL Heuristic

How does a static priority translate to CPU access?
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bonus = min (10, (avg. sleep time / 100) ms)
• avg. sleep time is 0 => bonus is 0

• avg. sleep time is 100 ms => bonus is 1

• avg. sleep time is 1000 ms => bonus is 10

• avg. sleep time is 1500 ms => bonus is 10

• Your bonus increases as you sleep more.

dynamic priority = 

max (100, min (static priority – bonus + 5, 139))

Min priority # is still 100

Max priority # is still 139

24

SCHED_NORMAL Heuristic

How does a dynamic priority adjust CPU access?

(Bonus is subtracted to increase priority)
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Min priority # is still 100

Max priority # is still 139

bonus = min (10, avg. sleep time / 100) ms
• avg. sleep time is 0 => bonus is 0

• avg. sleep time is 100 ms => bonus is 1

• avg. sleep time is 1000 ms => bonus is 10

• avg. sleep time is 1500 ms => bonus is 10

• Your bonus increases as you sleep more.

dynamic priority = 

max (100, min (static priority – bonus + 5, 139))
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SCHED_NORMAL Heuristic

How does a dynamic priority adjust CPU access?

(Bonus is subtracted to increase priority)

What’s the problem with this (or any) heuristic?
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Completely Fair Scheduler
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■ Goal: Fairly divide a CPU evenly among all competing
processes with a clean implementation

■ Merged into the 2.6.23 release of the Linux kernel and is 
the default scheduler.

■ Created by Ingo Molnar in a short burst of creativity which
led to a 100K kernel patch developed in 62 hours.

Basic Idea: 

■ Virtual Runtime (vruntime): When a process runs it 
accumulates “virtual time.” If priority is high, virtual time 
accumulates slowly. If priority is low, virtual time 
accumulates quickly.

■ It is a “catch up” policy — task with smallest amount of 
virtual time gets to run next.
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Completely Fair Scheduler
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■ Scheduler maintains a red-black tree where nodes are 
ordered according to received virtual execution time

■ Node with smallest virtual received execution time is 
picked next

■ Priorities determine accumulation rate of virtual 
execution time

■ Higher priority → slower accumulation rate
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Completely Fair Scheduler
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■ Scheduler maintains a red-black tree where nodes are 
ordered according to received virtual execution time

■ Node with smallest virtual received execution time is 
picked next

■ Priorities determine accumulation rate of virtual 
execution time

■ Higher priority → slower accumulation rate

Property of CFS: If all task’s virtual clocks run at
exactly the same speed, they will all get the same
amount of time on the CPU.

How does CFS account for I/O-intensive tasks?
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Example
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■ Three tasks A, B, C accumulate virtual time 
at a rate of 1, 2, and 3, respectively.

■ What is the expected share of the CPU that 
each gets?  

Q01: A => {A:1, B:0, C:0}

Q02: B => {A:1, B:2, C:0}

Q03: C => {A:1, B:2, C:3}

Q04: A => {A:2, B:2, C:3}

Q05: B => {A:2, B:4, C:3}

Q06: A => {A:3, B:4, C:3}

Q07: A => {A:4, B:4, C:3}

Q08: C => {A:4, B:4, C:6}

Q09: A => {A:5, B:4, C:6}

Q10: B => {A:5, B:6, C:6}

Q11: A => {A:6, B:6, C:6}

Strategy: How many quantums 
required for all clocks to be equal?

• Least common multiple is 6
• To reach VT=6… 

• A is scheduled 6 times
• B is scheduled 3 times
• C is scheduled 2 times.

• 6+3+2 = 11
• A => 6/11 of CPU time
• B => 3/11 of CPU time
• C => 2/11 of CPU time
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Red-Black Trees
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■ CFS dispenses with a run queue and instead 

maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:
1. Each node is red or black
2. Root node is black
3. All leaves (NIL) are black
4. If node is red, both children are black
5. Every path from a given node to its

descendent NIL leaves contains the
same number of black nodes
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Red-Black Trees

31

■ CFS dispenses with a run queue and instead 

maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:
1. Each node is red or black
2. Root node is black
3. All leaves (NIL) are black
4. If node is red, both children are black
5. Every path from a given node to its

descendent NIL leaves contains the
same number of black nodes

Takeaway: In an RB Tree, the path from the root to the farthest leaf is no
more than twice as long as the path from the root to the nearest leaf.
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Red-Black Trees
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■ CFS dispenses with a run queue and instead 

maintains a time-ordered red-black tree. Why?

Benefits over run queue:
• O(1) access to leftmost node 

(lowest virtual time).
• O(log n) insert
• O(log n) delete
• self-balancing
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Account for I/O
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One problem with picking the lowest vruntime to run next 
arises with jobs that have gone to sleep for a long period of 

time. Imagine two processes, A and B, one of which (A) runs 
continuously, and the other (B) which has gone to sleep for a 
long period of time (say, 10 seconds). When B wakes up, its 

vruntime will be 10 seconds behind A’s, and thus (if we’re not 
careful), B will now monopolize the CPU for the next 10 

seconds while it catches up, effectively starving A.

What’s the solution? ☺
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How/when to preempt?
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■ Kernel sets the need_resched flag (per-process var) at 
various locations

■ scheduler_tick(), a process used up its timeslice
■ try_to_wake_up(), higher-priority process awaken

■ Kernel checks need_resched at certain points, if safe, 
schedule() will be invoked

■ User preemption
■ Return to user space from a system call or an interrupt 

handler

■ Kernel preemption
■ A task in the kernel explicitly calls schedule()
■ A task in the kernel blocks (which results in a call to 
schedule() )
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A Note on CPU Affinity
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We’ve had lots of great (abstraction-violating) questions 
about how multiprocessor scheduling works in practice…

• To answer, consider CPU Affinity — scheduling a 
process to stay on the same CPU as long as possible

• Benefits?

• Soft Affinity — Natural occurs through efficient 
scheduling

• Present in O(1) onward, absent in O(N)

• Hard Affinity — Explicit request to scheduler made 
through system calls (Linux 2.5+)
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Multi-Processor Scheduling
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• CPU affinity would seem to necessitate a multi-queue
approach to scheduling… but how?

• Asymmetric Multiprocessing (AMP): One processor 
(e.g., CPU 0) handles all scheduling decisions and I/O 
processing, other processes execute only user code.

• Symmetric Multiprocessing (SMP): Each processor is 
self-scheduling. Could work with a single queue, but 
also works with private queues.

• Potential problems?
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SMP Load Balancing
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• SMP systems require load balancing to keep the 
workload evenly distributed across all processors.

• Two general approaches:

• Push Migration: Task routinely checks the load on 
each processor and redistributes tasks between 
processors if imbalance is detected.

• Pull Migration: Idle processor can actively pull 
waiting tasks from a busy processor.
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Other scheduling policies
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■ What if you want to maximize throughput?
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Other scheduling policies
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■ What if you want to maximize throughput?
■ Shortest job first!
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Other scheduling policies
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■ What if you want to maximize throughput?
■ Shortest job first!

■ What if you want to meet all deadlines?
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Other scheduling policies
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■ What if you want to maximize throughput?
■ Shortest job first!

■ What if you want to meet all deadlines?
■ Earliest deadline first!
■ Problem?
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Other scheduling policies
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■ What if you want to maximize throughput?
■ Shortest job first!

■ What if you want to meet all deadlines?
■ Earliest deadline first!
■ Problem?
■ Works only if you are not “overloaded”. If the total 

amount of work is more than capacity, a domino effect 

occurs as you always choose the task with the nearest 
deadline (that you have the least chance of finishing by 

the deadline), so you may miss a lot of deadlines!
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EDF Domino Effect
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■ Problem:
■ It is Monday. You have a homework due tomorrow 

(Tuesday), a homework due Wednesday, and a homework 
due Thursday

■ It takes on average 1.5 days to finish a homework.

■ Question: What is your best (scheduling) policy?
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EDF Domino Effect
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■ Problem:
■ It is Monday. You have:

■ a homework (A) due tomorrow (Tuesday),
■ a homework (B) due Wednesday,
■ and a homework (C) due Thursday.

■ It takes on average 1.5 days to finish a homework.

■ Question: What is your best (scheduling) policy?
■ You could instead skip tomorrow’s homework and work on 

the next two, finishing them by their deadlines 
■ Note that EDF is bad: It always forces you to work on the 

next deadline, but you have only one day between 
deadlines which is not enough to finish a 1.5 day 
homework – you might not complete any of the three 
homeworks! 
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