
CS 423: Operating Systems Design

Jongyul Kim

CS 423

Operating System Design:

Scheduling in Linux

* Thanks for Prof. Adam Bates for the slides.

1

CS 423: Operating Systems Design

What We will Learn Today

2

• Multi-Level Feedback Queue (MLFQ) Scheduler

• Linux Schedulers

• Early Linux Schedulers

• O(N), O(1) Schedulers

• Completely Fair Scheduler (CFS)

• Multi-processor Scheduling

CS 423: Operating Systems Design 3

“CPU scheduling is not planning; there is not
an optimal solution. Rather CPU scheduling is
about balancing goals and making difficult
tradeoffs.”

-- Joseph T. Meehean

Principles

CS 423: Operating Systems Design

What Are Scheduling Goals?

4

• What are the goals of a scheduler?

• Linux Scheduler’s Goals:

■ Generate illusion of concurrency

■ Maximize resource utilization (e.g., mix CPU and
I/O bound processes appropriately)

■ Meet needs of both I/O-bound and CPU-bound
processes

■ Give I/O-bound processes better interactive response

■ Do not starve CPU-bound processes

■ Support Real-Time (RT) applications

CS 423: Operating Systems Design 5

Multi-Level Feedback Queue

CS 423: Operating Systems Design

Why is MLFQ a good design?

6

• How to design a scheduler that both minimizes
response time for interactive jobs while also
minimizing turnaround time without a priori
knowledge of job length?

• Yes, SJF – the assumption is to know which is the
“shortest..”

• It’s just very hard to know in advance.

• Sometimes processes/threads could try to game
(we will see an example).

CS 423: Operating Systems Design

Why is MLFQ a good design?

7

• The Key Idea

• Dynamically adjusting the priority level based on
observing the behavior of the processes/threads

• Basic Design

• When a job enters the system, it is placed at the highest
priority (the topmost queue).

• If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue).

• If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

CS 423: Operating Systems Design

Basic Design

8

Job 1 Job 2

High
priority

Low
priority

time

CS 423: Operating Systems Design

Basic Design

9

• because it doesn’t know whether a job will be a short job or a
long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run
quickly and complete; if it is not a short job, it will slowly move
down the queues, and thus soon prove itself to be a long-
running more batch-like process.

CS 423: Operating Systems Design

Limitations?

10

• Starvation

• A process changing its characteristics

• Gaming the scheduler

CS 423: Operating Systems Design

Priority Boost

11

• After some time period S, move all the jobs in the
system to the topmost queue

CS 423: Operating Systems Design

Better Accounting

12

• Once a job uses up its time allotment at a given level
(regardless of how many times it has given up the
CPU), its priority is reduced (i.e., it moves down one
queue).

CS 423: Operating Systems Design

Sounds perfect?

13

• How many queues should there be?

• How big should the time slice be per queue?

• How often should priority be boosted in order to
avoid starvation and account for changes in behavior?

CS 423: Operating Systems Design

Early Linux Schedulers

14

■ Linux 1.2: circular queue w/ round-robin policy.
■ Simple and minimal.
■ Did not meet many of the aforementioned goals

■ Linux 2.2: introduced scheduling classes (real-
time, non-real-time).

/* Scheduling Policies

*/

#define SCHED_OTHER 0 // Normal user tasks (default)

#define SCHED_FIFO 1 // RT: Will almost never be preempted

#define SCHED_RR 2 // RT: Prioritized RR queues

CS 423: Operating Systems Design 15

Two Fundamental Mechanisms…

■ Prioritization

■ Resource partitioning

Why 2 RT mechanisms?

CS 423: Operating Systems Design

Prioritization

16

SCHED_FIFO

■ Used for real-time processes

■ Conventional preemptive fixed-priority
scheduling

■ Current process continues to run until it ends or a
higher-priority real-time process becomes runnable

■ Same-priority processes are scheduled FIFO

CS 423: Operating Systems Design

Partitioning

17

SCHED_RR

■ Used for real-time processes

■ CPU “partitioning” among same priority
processes

■ Current process continues to run until it
ends or its time quantum expires

■ Quantum size determines the CPU share

■ Processes of a lower priority run when no
processes of a higher priority are present

CS 423: Operating Systems Design

Linux 2.4 Scheduler

18

■ 2.4: O(N) scheduler.
■ Epochs → slices: when blocked before the slice

ends, half of the remaining slice is added in the
next epoch.

■ Simple.
■ Lacked scalability.
■ Weak for real-time systems.

CS 423: Operating Systems Design

Linux 2.6 Scheduler

19

■ O(1) scheduler

■ Tasks are indexed according to their priority
[0,139]

■ Real-time [0, 99]
■ Non-real-time [100, 139]

CS 423: Operating Systems Design

SCHED_NORMAL

20

■ Used for non real-time processes

■ Complex heuristic to balance the needs of I/O and CPU centric
applications

■ Processes start at 120 by default

■ Static priority
■ A “nice” value: 19 to -20.
■ Inherited from the parent process
■ Altered by user (negative values require special permission)

■ Dynamic priority
■ Based on static priority and applications characteristics
(interactive or CPU-bound)

■ Favor interactive applications over CPU-bound ones

■ Timeslice is mapped from priority

CS 423: Operating Systems Design

SCHED_NORMAL

21

■ Used for non real-time processes

■ Complex heuristic to balance the needs of I/O and CPU centric
applications

■ Processes start at 120 by default

■ Static priority
■ A “nice” value: 19 to -20.
■ Inherited from the parent process
■ Altered by user (negative values require special permission)

■ Dynamic priority
■ Based on static priority and applications characteristics
(interactive or CPU-bound)

■ Favor interactive applications over CPU-bound ones

■ Timeslice is mapped from priority

Static Priority: Handles assigned task priorities

Dynamic Priority: Favors interactive tasks

Combined, these mechanisms govern CPU
access in the SCHED_NORMAL scheduler.

CS 423: Operating Systems Design

SCHED_NORMAL Heuristic

22

if (static priority < 120)
Quantum = 20 × (140 – static priority)

else
Quantum = 5 × (140 – static priority)

(in ms)

Higher priority → Larger quantum

How does a static priority translate to real CPU access?

CS 423: Operating Systems Design 23

Description
Static

priority
Nice

value
Base time

quantum

Highest static
priority

100 -20 800 ms

High static
priority

110 -10 600 ms

Default static
priority

120 0 100 ms

Low static
priority

130 +10 50 ms

Lowest static
priority

139 +19 5 ms

SCHED_NORMAL Heuristic

How does a static priority translate to CPU access?

CS 423: Operating Systems Design

bonus = min (10, (avg. sleep time / 100) ms)
• avg. sleep time is 0 => bonus is 0

• avg. sleep time is 100 ms => bonus is 1

• avg. sleep time is 1000 ms => bonus is 10

• avg. sleep time is 1500 ms => bonus is 10

• Your bonus increases as you sleep more.

dynamic priority =

max (100, min (static priority – bonus + 5, 139))

Min priority # is still 100

Max priority # is still 139

24

SCHED_NORMAL Heuristic

How does a dynamic priority adjust CPU access?

(Bonus is subtracted to increase priority)

CS 423: Operating Systems Design

Min priority # is still 100

Max priority # is still 139

bonus = min (10, avg. sleep time / 100) ms
• avg. sleep time is 0 => bonus is 0

• avg. sleep time is 100 ms => bonus is 1

• avg. sleep time is 1000 ms => bonus is 10

• avg. sleep time is 1500 ms => bonus is 10

• Your bonus increases as you sleep more.

dynamic priority =

max (100, min (static priority – bonus + 5, 139))

25

SCHED_NORMAL Heuristic

How does a dynamic priority adjust CPU access?

(Bonus is subtracted to increase priority)

What’s the problem with this (or any) heuristic?

CS 423: Operating Systems Design

Completely Fair Scheduler

26

■ Goal: Fairly divide a CPU evenly among all competing
processes with a clean implementation

■ Merged into the 2.6.23 release of the Linux kernel and is
the default scheduler.

■ Created by Ingo Molnar in a short burst of creativity which
led to a 100K kernel patch developed in 62 hours.

Basic Idea:

■ Virtual Runtime (vruntime): When a process runs it
accumulates “virtual time.” If priority is high, virtual time
accumulates slowly. If priority is low, virtual time
accumulates quickly.

■ It is a “catch up” policy — task with smallest amount of
virtual time gets to run next.

CS 423: Operating Systems Design

Completely Fair Scheduler

27

■ Scheduler maintains a red-black tree where nodes are
ordered according to received virtual execution time

■ Node with smallest virtual received execution time is
picked next

■ Priorities determine accumulation rate of virtual
execution time

■ Higher priority → slower accumulation rate

CS 423: Operating Systems Design

Completely Fair Scheduler

28

■ Scheduler maintains a red-black tree where nodes are
ordered according to received virtual execution time

■ Node with smallest virtual received execution time is
picked next

■ Priorities determine accumulation rate of virtual
execution time

■ Higher priority → slower accumulation rate

Property of CFS: If all task’s virtual clocks run at
exactly the same speed, they will all get the same
amount of time on the CPU.

How does CFS account for I/O-intensive tasks?

CS 423: Operating Systems Design

Example

29

■ Three tasks A, B, C accumulate virtual time
at a rate of 1, 2, and 3, respectively.

■ What is the expected share of the CPU that
each gets?

Q01: A => {A:1, B:0, C:0}

Q02: B => {A:1, B:2, C:0}

Q03: C => {A:1, B:2, C:3}

Q04: A => {A:2, B:2, C:3}

Q05: B => {A:2, B:4, C:3}

Q06: A => {A:3, B:4, C:3}

Q07: A => {A:4, B:4, C:3}

Q08: C => {A:4, B:4, C:6}

Q09: A => {A:5, B:4, C:6}

Q10: B => {A:5, B:6, C:6}

Q11: A => {A:6, B:6, C:6}

Strategy: How many quantums
required for all clocks to be equal?

• Least common multiple is 6
• To reach VT=6…

• A is scheduled 6 times
• B is scheduled 3 times
• C is scheduled 2 times.

• 6+3+2 = 11
• A => 6/11 of CPU time
• B => 3/11 of CPU time
• C => 2/11 of CPU time

CS 423: Operating Systems Design

Red-Black Trees

30

■ CFS dispenses with a run queue and instead

maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:
1. Each node is red or black
2. Root node is black
3. All leaves (NIL) are black
4. If node is red, both children are black
5. Every path from a given node to its

descendent NIL leaves contains the
same number of black nodes

CS 423: Operating Systems Design

Red-Black Trees

31

■ CFS dispenses with a run queue and instead

maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:
1. Each node is red or black
2. Root node is black
3. All leaves (NIL) are black
4. If node is red, both children are black
5. Every path from a given node to its

descendent NIL leaves contains the
same number of black nodes

Takeaway: In an RB Tree, the path from the root to the farthest leaf is no
more than twice as long as the path from the root to the nearest leaf.

CS 423: Operating Systems Design

Red-Black Trees

32

■ CFS dispenses with a run queue and instead

maintains a time-ordered red-black tree. Why?

Benefits over run queue:
• O(1) access to leftmost node

(lowest virtual time).
• O(log n) insert
• O(log n) delete
• self-balancing

CS 423: Operating Systems Design

Account for I/O

33

One problem with picking the lowest vruntime to run next
arises with jobs that have gone to sleep for a long period of

time. Imagine two processes, A and B, one of which (A) runs
continuously, and the other (B) which has gone to sleep for a
long period of time (say, 10 seconds). When B wakes up, its

vruntime will be 10 seconds behind A’s, and thus (if we’re not
careful), B will now monopolize the CPU for the next 10

seconds while it catches up, effectively starving A.

What’s the solution? ☺

CS 423: Operating Systems Design

How/when to preempt?

34

■ Kernel sets the need_resched flag (per-process var) at
various locations

■ scheduler_tick(), a process used up its timeslice
■ try_to_wake_up(), higher-priority process awaken

■ Kernel checks need_resched at certain points, if safe,
schedule() will be invoked

■ User preemption
■ Return to user space from a system call or an interrupt

handler

■ Kernel preemption
■ A task in the kernel explicitly calls schedule()
■ A task in the kernel blocks (which results in a call to
schedule())

CS 423: Operating Systems Design

A Note on CPU Affinity

35

We’ve had lots of great (abstraction-violating) questions
about how multiprocessor scheduling works in practice…

• To answer, consider CPU Affinity — scheduling a
process to stay on the same CPU as long as possible

• Benefits?

• Soft Affinity — Natural occurs through efficient
scheduling

• Present in O(1) onward, absent in O(N)

• Hard Affinity — Explicit request to scheduler made
through system calls (Linux 2.5+)

CS 423: Operating Systems Design

Multi-Processor Scheduling

36

• CPU affinity would seem to necessitate a multi-queue
approach to scheduling… but how?

• Asymmetric Multiprocessing (AMP): One processor
(e.g., CPU 0) handles all scheduling decisions and I/O
processing, other processes execute only user code.

• Symmetric Multiprocessing (SMP): Each processor is
self-scheduling. Could work with a single queue, but
also works with private queues.

• Potential problems?

CS 423: Operating Systems Design

SMP Load Balancing

37

• SMP systems require load balancing to keep the
workload evenly distributed across all processors.

• Two general approaches:

• Push Migration: Task routinely checks the load on
each processor and redistributes tasks between
processors if imbalance is detected.

• Pull Migration: Idle processor can actively pull
waiting tasks from a busy processor.

CS 423: Operating Systems Design

Other scheduling policies

38

■ What if you want to maximize throughput?

CS 423: Operating Systems Design

Other scheduling policies

39

■ What if you want to maximize throughput?
■ Shortest job first!

CS 423: Operating Systems Design

Other scheduling policies

40

■ What if you want to maximize throughput?
■ Shortest job first!

■ What if you want to meet all deadlines?

CS 423: Operating Systems Design

Other scheduling policies

41

■ What if you want to maximize throughput?
■ Shortest job first!

■ What if you want to meet all deadlines?
■ Earliest deadline first!
■ Problem?

CS 423: Operating Systems Design

Other scheduling policies

42

■ What if you want to maximize throughput?
■ Shortest job first!

■ What if you want to meet all deadlines?
■ Earliest deadline first!
■ Problem?
■ Works only if you are not “overloaded”. If the total

amount of work is more than capacity, a domino effect

occurs as you always choose the task with the nearest
deadline (that you have the least chance of finishing by

the deadline), so you may miss a lot of deadlines!

CS 423: Operating Systems Design

EDF Domino Effect

43

■ Problem:
■ It is Monday. You have a homework due tomorrow

(Tuesday), a homework due Wednesday, and a homework
due Thursday

■ It takes on average 1.5 days to finish a homework.

■ Question: What is your best (scheduling) policy?

CS 423: Operating Systems Design

EDF Domino Effect

44

■ Problem:
■ It is Monday. You have:

■ a homework (A) due tomorrow (Tuesday),
■ a homework (B) due Wednesday,
■ and a homework (C) due Thursday.

■ It takes on average 1.5 days to finish a homework.

■ Question: What is your best (scheduling) policy?
■ You could instead skip tomorrow’s homework and work on

the next two, finishing them by their deadlines
■ Note that EDF is bad: It always forces you to work on the

next deadline, but you have only one day between
deadlines which is not enough to finish a 1.5 day
homework – you might not complete any of the three
homeworks!

	Default Section
	Slide 1
	Slide 2: What We will Learn Today
	Slide 3
	Slide 4: What Are Scheduling Goals?

	MLFQ
	Slide 5
	Slide 6: Why is MLFQ a good design?
	Slide 7: Why is MLFQ a good design?
	Slide 8: Basic Design
	Slide 9: Basic Design
	Slide 10: Limitations?
	Slide 11: Priority Boost
	Slide 12: Better Accounting
	Slide 13: Sounds perfect?

	Early Linux Schedulers
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

	CFS
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

	Preemption
	Slide 34

	Multi-processor scheduling
	Slide 35: A Note on CPU Affinity
	Slide 36: Multi-Processor Scheduling
	Slide 37

	Other scheduling policies
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

