
CS423: Operating Systems Design

CS 423

Operating System Design:

Synchronization

Ram Alagappan

* Thanks for Prof. Bates and Prof. Xu for the slides.

CS423: Operating Systems Design

Recap - Threads

Threads – share the same address space

What does this mean?

Is the stack shared across threads?

How about the heap?

How about registers? Which are specific to threads?

Which are not?

CS423: Operating Systems Design

Synchronization Motivation

Main prints the value of c

What do you expect to be printed?

With 1 thread? With 2 threads?

CS423: Operating Systems Design

Synchronization Motivation

What’s going on here?

c++ boils down to something like this

mov mem_addr(c), eax

add 1, eax

mov eax, mem_addr(c)

Even on an uniprocessor!

CS423: Operating Systems Design

Crux of the Problem

Uncontrolled scheduling – threads can be

descheduled at any point in its execution

Without synchronization, you can have

Data race – result depends on the scheduling (with

untimely descheduling, can get undesired result)

Non-determinism – result vary across runs

What we want:

mutual exclusion – a common way to do this?

CS423: Operating Systems Design

Other Things to Worry About

Compiler/hardware might reorder instructions

Can this panic?

Why would they do that!?

CS423: Operating Systems Design

Why Reordering?

7

CS423: Operating Systems Design

Why Study in OS Class?

OS needs to provide synchronization primitives for

threads within an application to synchronize

Turns out OS was (one of) the first multi-threaded

application to worry about how to manage its internal

data structures when multiple threads can access it

CS423: Operating Systems Design

Too Much Milk!

9

CS423: Operating Systems Design

Desired Behaviors

At most one person buys

- this is called safety (the program should never do

anything bad)

Someone buys milk if needed

- this is called Liveness (the program eventually

does something good)

CS423: Operating Systems Design

Too Much Milk, Try #1

11

Does this work?

CS423: Operating Systems Design 12

Too Much Milk, Try #2

CS423: Operating Systems Design

Too Much Milk, Try #3

13

CS423: Operating Systems Design

Takeaways

Solution is complicated…

Generalizing to many threads is complex (what if N

people try to buy milk instead of 2)

As we will see, HW can simplify (still hard!)

Crux: uncontrolled scheduling

Modern compilers and hardware can reorder

makes things worse!

14

CS423: Operating Systems Design

Synchronization Roadmap

15

CS423: Operating Systems Design

Locks (Programmer View)

16

CS423: Operating Systems Design 17

Too Much Milk, Try #4

CS423: Operating Systems Design

Rules for Using Locks

18

CS423: Operating Systems Design

Ex: Thread-Safe Bounded Queue

19

CS423: Operating Systems Design

Question(s)

20

CS423: Operating Systems Design

So far – programmer perspective

Now, systems perspective! How to implement/realize a
lock?

Take 1: using only atomic memory load/store

• See too much milk solution

• Comment on Peterson’s (and similar) algorithms

• (Almost) nobody does this today!

21

Implementing Locks

CS423: Operating Systems Design

Lock Implementation for Uniprocessor?

22

Lock::acquire() {

disableInterrupts();

}

Lock::release() {

enableInterrupts();

}

What is good about this approach?

What is bad?

CS423: Operating Systems Design

Lock Implementation for Uniprocessor?

23

Lock::acquire() {

disableInterrupts();

if (value == BUSY) {

waiting.add(myTCB);

myTCB->state = WAITING;

next = readyList.remove();

switch(myTCB, next);

myTCB->state = RUNNING;

} else {

value = BUSY;

}

enableInterrupts();

}

Lock::release() {

disableInterrupts();

if (!waiting.Empty()) {

next = waiting.remove();

next->state = READY;

readyList.add(next);

} else {

value = FREE;

}

enableInterrupts();

}

CS423: Operating Systems Design

Via Atomic Instructions

Next lecture about how to implement locks using them

Test – return old

value

Set – set the

passed in value

HW does them

atomically!

CS423: Operating Systems Design

Condition Variables

When do you need them?

• Waiting inside a critical section
• Called only when holding a lock

• CV::Wait — atomically release lock and relinquish
processor
• Reacquire the lock when wakened

• CV::Signal — wake up a waiter, if any

• CV::Broadcast — wake up all waiters, if any

25

CS423: Operating Systems Design

Condition Variables

26

methodThatWaits() {

lock.acquire();

// Read/write shared state

while (!testSharedState()) {

cv.wait(&lock);

}

// Read/write shared state

lock.release();

}

methodThatSignals() {

lock.acquire();

// Read/write shared state

// If testSharedState is now true

cv.signal(&lock);

// Read/write shared state

lock.release();

}

CS423: Operating Systems Design 27

Ex: Bounded Queue w/ CV

get() {

lock.acquire();

if (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

if ((tail – front) == MAX) {

full.wait(lock);

}

buf[tail % MAX] = item;

tail++;

empty.signal(lock);

lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design 28

Ex: Bounded Queue w/ CV

get() {

lock.acquire();

if (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

if ((tail – front) == MAX) {

full.wait(lock);

}

buf[tail % MAX] = item;

tail++;

empty.signal(lock);

lock.release();

}

Is there a problem with this code?

CS423: Operating Systems Design 29

Ex: Bounded Queue w/ CV

get() {

lock.acquire();

while (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

while ((tail – front) == MAX) {

full.wait(lock);

}

buf[tail % MAX] = item;

tail++;

empty.signal(lock);

lock.release();

}

CS423: Operating Systems Design

Mesa vs. Hoare Semantics

• Mesa (used widely)

• Signal puts waiter on ready list

• Signaler keeps lock and processor

• Not necessarily the waiter runs next

• Hoare (almost no one uses)

• Signal gives processor and lock to waiter

• Waiter runs when woken up by signaler

• When waiter finishes, processor/lock given back to
signaler

32

CS423: Operating Systems Design

FIFO Bounded Queue

(Correct under Hoare Semantics)

33

get() {

lock.acquire();

if (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

if ((tail – front) == MAX) {

full.wait(lock);

}

buf[last % MAX] = item;

last++;

empty.signal(lock);

// CAREFUL: someone else ran

lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design

Condition Variables

35

• ALWAYS hold lock when calling wait, signal, broadcast
• Condition variable is sync FOR shared state
• ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
• If signal when no one is waiting, no op
• If wait before signal, waiter wakes up

• Wait atomically releases lock
• What if wait, then release?
• What if release, then wait?

CS423: Operating Systems Design

Condition Variables

36

• When a thread is woken up from wait, it may not run
immediately
• Signal/broadcast put thread on ready list
• When lock is released, anyone might acquire it

• Wait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

• Simplifies implementation
• Of condition variables and locks
• Of code that uses condition variables and locks

CS423: Operating Systems Design

Synchronization Best Practices

37

• Identify objects or data structures that can be accessed by multiple threads
concurrently

• Add locks to object/module
• Grab lock on start to every method/procedure
• Release lock on finish

• If need to wait
• while(needToWait()) { condition.Wait(lock); }
• Do not assume when you wake up, signaller just ran

• If do something that might wake someone up
• Signal or Broadcast

• Always leave shared state variables in a consistent state
• When lock is released, or when waiting

CS423: Operating Systems Design

Remember the rules…

• Use consistent structure

• Always use locks and condition variables

• Always acquire lock at beginning of procedure, release
at end

• Always hold lock when using a condition variable

• Always wait in while loop

38

	Slide 1
	Slide 2: Recap - Threads
	Slide 3: Synchronization Motivation
	Slide 4: Synchronization Motivation
	Slide 5: Crux of the Problem
	Slide 6: Other Things to Worry About
	Slide 7
	Slide 8: Why Study in OS Class?
	Slide 9
	Slide 10: Desired Behaviors
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Takeaways
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Lock Implementation for Uniprocessor?
	Slide 23: Lock Implementation for Uniprocessor?
	Slide 24: Via Atomic Instructions
	Slide 25: Condition Variables
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32: Mesa vs. Hoare Semantics
	Slide 33: FIFO Bounded Queue
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Remember the rules…

