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Recap - Threads

Threads – share the same address space 

What does this mean?

Is the stack shared across threads?

How about the heap?

How about registers? Which are specific to threads? 

Which are not?
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Synchronization Motivation

Main prints the value of c

What do you expect to be printed? 

With 1 thread? With 2 threads?
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Synchronization Motivation

What’s going on here?

c++ boils down to something like this

mov mem_addr(c), eax

add 1, eax

mov eax, mem_addr(c)

Even on an uniprocessor!
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Crux of the Problem

Uncontrolled scheduling – threads can be 

descheduled at any point in its execution

Without synchronization, you can have

Data race – result depends on the scheduling (with 

untimely descheduling, can get undesired result)

Non-determinism – result vary across runs

What we want:

mutual exclusion – a common way to do this?
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Other Things to Worry About

Compiler/hardware might reorder instructions 

Can this panic?

Why would they do that!?
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Why Reordering?
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Why Study in OS Class?

OS needs to provide synchronization primitives for 

threads within an application to synchronize

Turns out OS was (one of) the first multi-threaded 

application to worry about how to manage its internal 

data structures when multiple threads can access it
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Too Much Milk!
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Desired Behaviors

At most one person buys 

- this is called safety (the program should never do 

anything bad)

Someone buys milk if needed

- this is called Liveness (the program eventually 

does something good)
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Too Much Milk, Try #1
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Does this work?
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Too Much Milk, Try #2
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Too Much Milk, Try #3

13



CS423: Operating Systems Design

Takeaways

Solution is complicated…

Generalizing to many threads is complex (what if N 

people try to buy milk instead of 2)

As we will see, HW can simplify (still hard!)

Crux: uncontrolled scheduling

Modern compilers and hardware can reorder

makes things worse!
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Synchronization Roadmap

15
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Locks (Programmer View)

16



CS423: Operating Systems Design 17

Too Much Milk, Try #4
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Rules for Using Locks
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Ex: Thread-Safe Bounded Queue
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Question(s)

20
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So far – programmer perspective

Now, systems perspective! How to implement/realize a 
lock?

Take 1: using only atomic memory load/store

• See too much milk solution

• Comment on Peterson’s (and similar) algorithms

• (Almost) nobody does this today!

21

Implementing Locks
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Lock Implementation for Uniprocessor?

22

Lock::acquire() { 

disableInterrupts(); 

}

Lock::release() {  

enableInterrupts(); 

} 

What is good about this approach?

What is bad?
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Lock Implementation for Uniprocessor?
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Lock::acquire() { 

disableInterrupts(); 

if (value == BUSY) { 

waiting.add(myTCB);

myTCB->state = WAITING;

next = readyList.remove();

switch(myTCB, next);

myTCB->state = RUNNING;

} else { 

value = BUSY; 

} 

enableInterrupts(); 

}

Lock::release() { 

disableInterrupts();

if (!waiting.Empty()) { 

next = waiting.remove();

next->state = READY;    

readyList.add(next); 

} else {

value = FREE; 

} 

enableInterrupts(); 

} 
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Via Atomic Instructions

Next lecture about how to implement locks using them

Test – return old 

value

Set – set the

passed in value

HW does them 

atomically!
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Condition Variables

When do you need them?

• Waiting inside a critical section
• Called only when holding a lock

• CV::Wait — atomically release lock and relinquish 
processor
• Reacquire the lock when wakened

• CV::Signal — wake up a waiter, if any

• CV::Broadcast — wake up all waiters, if any

25
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Condition Variables

26

methodThatWaits() {

lock.acquire();

// Read/write shared state

while (!testSharedState()) {

cv.wait(&lock);

}

// Read/write shared state

lock.release();

}

methodThatSignals() {

lock.acquire();

// Read/write shared state

// If testSharedState is now true

cv.signal(&lock);

// Read/write shared state

lock.release();

}
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Ex: Bounded Queue w/ CV

get() {

lock.acquire();

if (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

if ((tail – front) == MAX) {

full.wait(lock);

}

buf[tail % MAX] = item;

tail++;

empty.signal(lock);

lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables
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Ex: Bounded Queue w/ CV

get() {

lock.acquire();

if (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

if ((tail – front) == MAX) {

full.wait(lock);

}

buf[tail % MAX] = item;

tail++;

empty.signal(lock);

lock.release();

}

Is there a problem with this code?
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Ex: Bounded Queue w/ CV

get() {

lock.acquire();

while (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

while ((tail – front) == MAX) {

full.wait(lock);

}

buf[tail % MAX] = item;

tail++;

empty.signal(lock);

lock.release();

}
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Mesa vs. Hoare Semantics

• Mesa (used widely)

• Signal puts waiter on ready list

• Signaler keeps lock and processor

• Not necessarily the waiter runs next

• Hoare (almost no one uses)

• Signal gives processor and lock to waiter

• Waiter runs when woken up by signaler

• When waiter finishes, processor/lock given back to 
signaler

32
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FIFO Bounded Queue

(Correct under Hoare Semantics)

33

get() {

lock.acquire();

if (front == tail) {

empty.wait(lock);

}

item = buf[front % MAX];

front++;

full.signal(lock);

lock.release();

return item;

}

put(item) {

lock.acquire();

if ((tail – front) == MAX) {

full.wait(lock);

}

buf[last % MAX] = item;

last++;

empty.signal(lock);

// CAREFUL: someone else ran

lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables



CS423: Operating Systems Design

Condition Variables

35

• ALWAYS hold lock when calling wait, signal, broadcast
• Condition variable is sync FOR shared state
• ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
• If signal when no one is waiting, no op
• If wait before signal, waiter wakes up

• Wait atomically releases lock
• What if wait, then release?
• What if release, then wait?
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Condition Variables

36

• When a thread is woken up from wait, it may not run 
immediately
• Signal/broadcast put thread on ready list
• When lock is released, anyone might acquire it

• Wait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

• Simplifies implementation
• Of condition variables and locks
• Of code that uses condition variables and locks
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Synchronization Best Practices

37

• Identify objects or data structures that can be accessed by multiple threads 
concurrently

• Add locks to object/module
• Grab lock on start to every method/procedure
• Release lock on finish

• If need to wait
• while(needToWait()) { condition.Wait(lock); }
• Do not assume when you wake up, signaller just ran

• If do something that might wake someone up
• Signal or Broadcast

• Always leave shared state variables in a consistent state
• When lock is released, or when waiting
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Remember the rules…

• Use consistent structure

• Always use locks and condition variables

• Always acquire lock at beginning of procedure, release 
at end

• Always hold lock when using a condition variable

• Always wait in while loop

38
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