CS 423
Operating System Design:
Synchronization

Ram Alagappan

* Thanks for Prof. Bates and Prof. Xu for the slides.

CS423: Operating Systems Design

Recap - |hreads

Threads — share the same address space

What does this mean!?

Is the stack shared across threads?
How about the heap?

How about registers? Which are specific to threads!?
Which are not!?

CS423: Operating Systems Design

Synchronization Motivation [

static volatile int ¢ = 0;

void *mythread (void *arg) {

int 1i;

for (1 = 0; 1 < 1000000; 1++) c++;
return NULL;

}

Main prints the value of ¢

What do you expect to be printed!?
With 1 thread? With 2 threads?

CS423: Operating Systems Design

Synchronization Motivation 1

What’s going on here?

c++ boils down to something like this
mov mem_addr(c), eax
add 1, eax

mov eax, mem_addr(c)

Even on an uniprocessor!

CS423: Operating Systems Design

Crux of the Problem

Uncontrolled scheduling — threads can be
descheduled at any point in its execution

Without synchronization, you can have

Data race — result depends on the scheduling (with
untimely descheduling, can get undesired result)

Non-determinism — result vary across runs

What we want:

mutual exclusion —a common way to do this?

CS423: Operating Systems Design

Other Things to Worry About |

Compiler/hardware might reorder instructions
Can this panic!
Thread 1 Thread 2

p = someComputation(); while (!pInitialized)
plnitialized = true;
g = someFunction(p);
if (g !=someFunction(p))
panic

Why would they do that!?

CS423: Operating Systems Design

Why Reordering!?

* Why do compilers reorder instructions?

— Efficient code generation requires analyzing control/
data dependency

— If variables can spontaneously change, most compiler
optimizations become impossible

* Why do CPUs reorder instructions?

— Write buffering: allow next instruction to execute
while write is being completed

Fix: memory barrier
— Instruction to compiler/CPU
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns

CS423: Operating Systems Design

Why Study in OS Class? 1

OS needs to provide synchronization primitives for
threads within an application to synchronize

Turns out OS was (one of) the first multi-threaded
application to worry about how to manage its internal
data structures when multiple threads can access it

CS423: Operating Systems Design

Too Much Milk!

Person A Person B
12:30 Look in fridge. Out of milk.
12:35 Leave for store.
12:40 Arrive at store. Look in fridge. Out of milk.
12:45 Buy milk. Leave for store.
12:50 Arrive home, put milk away. Arrive at store.
12:55 Buy milk.
1:00 Arrive home, put milk away.
Oh no!

CS423: Operating Systems Design

Desired Behaviors

At most one person buys

- this is called safety (the program should never do
anything bad)

Someone buys milk if needed

- this is called Liveness (the program eventually
does something good)

CS423: Operating Systems Design

Too Much Milk, Try #1 1

* Try #1: leave a note
if (Inote)
if (Imilk) {
leave note
buy milk
remove note

}

Does this work!?

CS423: Operating Systems Design

Too Much Milk, Try #2

Thread A Thread B
leave note A leave note B
if (Inote B) { if (InoteA) {
if (Imilk) if (!milk)
buy milk buy milk
} }

remove note A remove note B

CS423: Operating Systems Design

Too Much Milk, Try #3

Thread A Thread B

leave note A leave note B

while (note B) // X if (InoteA){ //Y
do nothing; if (!milk)

if (Imilk) buy milk
buy milk; }

remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy

(ii) Other will buy, ok to quit

CS423: Operating Systems Design

I

[akeaways

Solution is complicated...

Generalizing to many threads is complex (what if N
people try to buy milk instead of 2)

As we will see, HW can simplify (still hard!)

Crux: uncontrolled scheduling
Modern compilers and hardware can reorder

makes things worse!

CS423: Operating Systems Design

Synchronization Roadmap |

Concurrent Applications

Shared Objects

Bounded Buffer Barrier

Synchronization Variables

Semaphores Locks Condition Variables

Atomic Instructions

Interrupt Disable Test-and-Set

Hardware

Multiple Processors Hardware Interrupts

CS423: Operating Systems Design

Locks (Programmer View) [

e Lock::acquire
— wait until lock is free, then take it

e Lock::release

— release lock, waking up anyone waiting for it
1. At most one lock holder at a time (safety)
2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority
waiters, waiter eventually gets lock
(progress)

CS423: Operating Systems Design

Too Much Milk, Try #4 T

Locks allow concurrent code to be much simpler:
lock.acquire();
if (!milk)
buy milk
lock.release();

CS423: Operating Systems Design

Rules for Using Locks

* Lock is initially free

* Always acquire before accessing shared data
structure

— Beginning of procedure!

* Always release after finishing with shared data
— End of procedure!
— Only the lock holder can release
— DO NOT throw lock for someone else to release
* Never access shared data without lock
— Danger!

CS423: Operating Systems Design

Ex: Thread-Safe Bounded Queue 1,[

tryget() { tryput(item) {
item = NULL; lock.acquire();
lock.acquire(); if ((tail — front) < size) {
if (front < tail) { buf[tail % MAX] = item;
item = buf[front % MAX]; tail++;
front++; }
} lock.release();
lock.release(); }

return item;

}
Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

CS423: Operating Systems Design

Question(s)

e |f tryget returns NULL, do we know the buffer
s empty?

* |f we poll tryget in a loop, what happens to a
thread calling tryput?

CS423: Operating Systems Design

Implementing Locks

So far — programmer perspective

Now, systems perspective! How to implement/realize a
lock?

Take 1: using only atomic memory load/store
e See too much milk solution
e Comment on Peterson’s (and similar) algorithms

e (Almost) nobody does this today!

CS423: Operating Systems Design

Lock Implementation for Uniprocessor? Tl

Lock::acquire () { Lock::release () {
disableInterrupts () enableInterrupts () ;

} }

What is good about this approach?
What is bad?

CS423: Operating Systems Design

Lock Implementation for Uniprocessor? Tl

Lock::acquire () {
disableInterrupts();
i1f (value == BUSY) {

walting.add (myTCB) ;

myTCB->state = WAITING;
next = readylList.remove();

switch (myTCB, next);

myTCB->state = RUNNING;

} else {
value = BUSY;
}

enablelInterrupts () ;

CS423: Operating Systems Design

Lock::release () {
disableInterrupts()
if (!waiting.Emptyv()) {
next = walting.remove ()

next->state = READY;
readyList.add (next) ;
} else {
value = FREE;
}

enablelInterrupts () ;

Via Atomic Instructions

! typedef struct _ lock_ t |
int flag; Test — return old

} lock t; Value

; vold init{lock t =*lock) |
0 f/f 0: lock is available, 1: lock is held Set — set the
7 lock->flag = 0;

.] passed in value
w wvold lock{lock t =*=lock) {

11 while (TestAndSet (&lock->flag, 1) == 1) HW dOeS them
12 r f E-Pirl_'n'q'ﬂit (do nlﬁlthinf_j] atomica”y!

13 I

14

15 wold unlock(lock t xlock) {
1t lock->flag = 0;

17 I

Next lecture about how to implement locks using them

CS423: Operating Systems Design

Condition Variables

When do you need them?

« Waiting inside a critical section
« Called only when holding a lock

« CV::Wait — atomically release lock and relinquish
pProcessor
« Reacquire the lock when wakened

« CV::Signal — wake up a waiter, if any

« CV::Broadcast — wake up all waiters, if any

CS423: Operating Systems Design

Condition Variables

methodThatWaits () { methodThatSignals () {
lock.acquire () ; lock.acquire() ;
// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState 1s now true
cv.walit (&lock) ; cv.signal (&lock) ;
}
// Read/write shared state // Read/write shared state
lock.release () ; lock.release();

CS423: Operating Systems Design

Ex: Bounded Queue w/ CV

get () {
lock.acquire () ;

1f (front == tail) {
empty.wait (lock);

put (1tem)
lock.acquire () ;
1f ((tai1l - front) == MAX)

} full.wait (lock);

item = buf[front % MAX];
front++;

full.signal (lock);
lock.release() ;

return item;

}

bufl[tail % MAX] = i1tem;
taill++;

empty.signal (lock) ;
lock.release() ;

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

{

I

CS423: Operating Systems Design

Fx: Bounded Queue w/ CV | [

et .
J O 1 , put (1tem) {
lock.acquire () ; .
. . lock.acquire() ;
1f (front == tail) { . .
emoty . wait (Lock) ; 1f ((tai1l - front) == MAX) {
} Pty / full .wait (lock) ;

}

bufl[tail % MAX] = i1tem;
taill++;

empty.signal (lock) ;
lock.release() ;

item = buf[front % MAX];
front++;

full.signal (lock);
lock.release() ;

return item;

Is there a problem with this code!?

CS423: Operating Systems Design

Fx: Bounded Queue w/ CV | [

et .
get () A | put (item) {
lock.acquire () ; .
. , lock.acquire() ;
while (front == tail) { . .
ety . wait (Lock) ; while ((tail - front) == MAX) {
} PLy ’ full.wait (lock) ;

}

bufl[tail % MAX] = i1tem;
taill++;

empty.signal (lock) ;
lock.release() ;

item = buf[front % MAX];
front++;

full.signal (lock);
lock.release() ;

return item;

CS423: Operating Systems Design

Mesa vs. Hoare Semantics |

e Mesa (used widely)
e Signal puts waiter on ready list
e Signaler keeps lock and processor
 Not necessarily the waiter runs next
e Hoare (almost no one uses)
e Signal gives processor and lock to waiter
e Waiter runs when woken up by signaler

« When waiter finishes, processor/lock given back to
signaler

CS423: Operating Systems Design

FIFO Bounded Queue

(Correct under Hoare Semantics)

get () { put (1tem) {
lock.acquire () ; lock.acquire () ;
if (front == tail) { 1if ((tail - front) == MAX) {

empty.wait (lock) ; full.wait (lock);

} }
item = buf[front % MAX]; buf|[last % MAX] = item;
front++; last++;
full.signal (lock) ; empty.signal (lock) ;
lock.release () ; // CAREFUL: someone else ran
return item; lock.release() ;

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design

Condition Variables

e ALWAYS hold lock when calling wait, signal, broadcast
e (Condition variable is sync FOR shared state
e ALWAYS hold lock when accessing shared state

e Condition variable is memoryless
e If signal when no one is waiting, no op
o If wait before signal, waiter wakes up

e Wait atomically releases lock
e What if wait, then release?
e What if release, then wait?

CS423: Operating Systems Design

Condition Variables

e When a thread is woken up from wait, it may not run
immediately
e Signal/broadcast put thread on ready list
e When lock is released, anyone might acquire it

e Wait MUST be in a loop
while (needToWait()) {
condition.Wait(lock);
y

e Simplifies implementation
e Of condition variables and locks
e Of code that uses condition variables and locks

CS423: Operating Systems Design

Synchronization Best Practices 1

e Identify objects or data structures that can be accessed by multiple threads
concurrently

e Add locks to object/module
e Grab lock on start to every method/procedure
e Release lock on finish

e If need to wait
e while(needToWait()) { condition.Wait(lock); }»
e Do not assume when you wake up, signaller just ran

e If do something that might wake someone up
e Signal or Broadcast

e Always leave shared state variables in a consistent state
e When lock is released, or when waiting

CS423: Operating Systems Design

Remember the rules...

e Use consistent structure
e Always use locks and condition variables

e Always acquire lock at beginning of procedure, release
at end

e Always hold lock when using a condition variable

e Always wait in while loop

CS423: Operating Systems Design

	Slide 1
	Slide 2: Recap - Threads
	Slide 3: Synchronization Motivation
	Slide 4: Synchronization Motivation
	Slide 5: Crux of the Problem
	Slide 6: Other Things to Worry About
	Slide 7
	Slide 8: Why Study in OS Class?
	Slide 9
	Slide 10: Desired Behaviors
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Takeaways
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Lock Implementation for Uniprocessor?
	Slide 23: Lock Implementation for Uniprocessor?
	Slide 24: Via Atomic Instructions
	Slide 25: Condition Variables
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32: Mesa vs. Hoare Semantics
	Slide 33: FIFO Bounded Queue
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Remember the rules…

