CS 423
Operating System Design:
Synchronization

Ram Alagappan

* Thanks for Prof. Bates and Prof. Xu for the slides.
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Recap - |hreads

Threads — share the same address space

What does this mean!?

Is the stack shared across threads?
How about the heap?

How about registers? Which are specific to threads!?
Which are not!?
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Synchronization Motivation [

static volatile int ¢ = 0;

void *mythread (void *arg) {

int 1i;

for (1 = 0; 1 < 1000000; 1++) c++;
return NULL;

}

Main prints the value of ¢

What do you expect to be printed!?
With 1 thread? With 2 threads?
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Synchronization Motivation 1

What’s going on here?

c++ boils down to something like this
mov mem_addr(c), eax
add 1, eax

mov eax, mem_addr(c)

Even on an uniprocessor!
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Crux of the Problem

Uncontrolled scheduling — threads can be
descheduled at any point in its execution

Without synchronization, you can have

Data race — result depends on the scheduling (with
untimely descheduling, can get undesired result)

Non-determinism — result vary across runs

What we want:

mutual exclusion —a common way to do this?
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Other Things to Worry About |

Compiler/hardware might reorder instructions
Can this panic!
Thread 1 Thread 2

p = someComputation();  while (!pInitialized)
plnitialized = true;
g = someFunction(p);
if (g !=someFunction(p))
panic

Why would they do that!?

CS423: Operating Systems Design



Why Reordering!?

* Why do compilers reorder instructions?

— Efficient code generation requires analyzing control/
data dependency

— If variables can spontaneously change, most compiler
optimizations become impossible

* Why do CPUs reorder instructions?

— Write buffering: allow next instruction to execute
while write is being completed

Fix: memory barrier
— Instruction to compiler/CPU
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns
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Why Study in OS Class? 1

OS needs to provide synchronization primitives for
threads within an application to synchronize

Turns out OS was (one of) the first multi-threaded
application to worry about how to manage its internal
data structures when multiple threads can access it
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Too Much Milk!

Person A Person B
12:30 Look in fridge. Out of milk.
12:35 Leave for store.
12:40 Arrive at store. Look in fridge. Out of milk.
12:45 Buy milk. Leave for store.
12:50 Arrive home, put milk away. Arrive at store.
12:55 Buy milk.
1:00 Arrive home, put milk away.
Oh no!
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Desired Behaviors

At most one person buys

- this is called safety (the program should never do
anything bad)

Someone buys milk if needed

- this is called Liveness (the program eventually
does something good)
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Too Much Milk, Try #1 1

* Try #1: leave a note
if (Inote)
if (Imilk) {
leave note
buy milk
remove note

}

Does this work!?
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Too Much Milk, Try #2

Thread A Thread B
leave note A leave note B
if (Inote B) { if (InoteA) {
if (Imilk) if (!milk)
buy milk buy milk
} }

remove note A remove note B
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Too Much Milk, Try #3

Thread A Thread B

leave note A leave note B

while (note B) // X if (InoteA){ //Y
do nothing; if (!milk)

if (Imilk) buy milk
buy milk; }

remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy

(ii) Other will buy, ok to quit
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[ akeaways

Solution is complicated...

Generalizing to many threads is complex (what if N
people try to buy milk instead of 2)

As we will see, HW can simplify (still hard!)

Crux: uncontrolled scheduling
Modern compilers and hardware can reorder

makes things worse!
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Synchronization Roadmap |

Concurrent Applications

Shared Objects

Bounded Buffer Barrier

Synchronization Variables

Semaphores Locks Condition Variables

Atomic Instructions

Interrupt Disable Test-and-Set

Hardware

Multiple Processors Hardware Interrupts
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Locks (Programmer View) [

e Lock::acquire
— wait until lock is free, then take it

e Lock::release

— release lock, waking up anyone waiting for it
1. At most one lock holder at a time (safety)
2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority
waiters, waiter eventually gets lock
(progress)
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Too Much Milk, Try #4 T

Locks allow concurrent code to be much simpler:
lock.acquire();
if (!milk)
buy milk
lock.release();
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Rules for Using Locks

* Lock is initially free

* Always acquire before accessing shared data
structure

— Beginning of procedure!

* Always release after finishing with shared data
— End of procedure!
— Only the lock holder can release
— DO NOT throw lock for someone else to release
* Never access shared data without lock
— Danger!
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Ex: Thread-Safe Bounded Queue 1,[

tryget() { tryput(item) {
item = NULL; lock.acquire();
lock.acquire(); if ((tail — front) < size) {
if (front < tail) { buf[tail % MAX] = item;
item = buf[front % MAX]; tail++;
front++; }
} lock.release();
lock.release(); }

return item;

}
Initially: front = tail = 0; lock = FREE; MAX is buffer capacity
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Question(s)

e |f tryget returns NULL, do we know the buffer
s empty?

* |f we poll tryget in a loop, what happens to a
thread calling tryput?
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Implementing Locks

So far — programmer perspective

Now, systems perspective! How to implement/realize a
lock?

Take 1: using only atomic memory load/store
e See too much milk solution
e Comment on Peterson’s (and similar) algorithms

e (Almost) nobody does this today!
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Lock Implementation for Uniprocessor? Tl

Lock::acquire () { Lock::release () {
disableInterrupts () enableInterrupts () ;

} }

What is good about this approach?
What is bad?
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Lock Implementation for Uniprocessor? Tl

Lock::acquire () {
disableInterrupts();
i1f (value == BUSY) {

walting.add (myTCB) ;

myTCB->state = WAITING;
next = readylList.remove();

switch (myTCB, next);

myTCB->state = RUNNING;

} else {
value = BUSY;
}

enablelInterrupts () ;
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Lock::release () {
disableInterrupts()
if (!waiting.Emptyv()) {
next = walting.remove ()

next->state = READY;
readyList.add (next) ;
} else {
value = FREE;
}

enablelInterrupts () ;




Via Atomic Instructions

! typedef struct _ lock_ t |
int flag; Test — return old

} lock t; Value

; vold init{lock t =*lock) |
0 f/f 0: lock is available, 1: lock is held Set — set the
7 lock->flag = 0;

. ] passed in value
w wvold lock{lock t =*=lock) {

11 while (TestAndSet (&lock->flag, 1) == 1) HW dOeS them
12 r f E-Pirl_'n'q'ﬂit (do nlﬁlthinf_j] atomica”y!

13 I

14

15 wold unlock(lock t xlock) {
1t lock->flag = 0;

17 I

Next lecture about how to implement locks using them
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Condition Variables

When do you need them?

« Waiting inside a critical section
« Called only when holding a lock

« CV::Wait — atomically release lock and relinquish
pProcessor
« Reacquire the lock when wakened

« CV::Signal — wake up a waiter, if any

« CV::Broadcast — wake up all waiters, if any
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Condition Variables

methodThatWaits () { methodThatSignals () {
lock.acquire () ; lock.acquire() ;
// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState 1s now true
cv.walit (&lock) ; cv.signal (&lock) ;
}
// Read/write shared state // Read/write shared state
lock.release () ; lock.release();
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Ex: Bounded Queue w/ CV

get () {
lock.acquire () ;

1f (front == tail) {
empty.wait (lock);

put (1tem)
lock.acquire () ;
1f ((tai1l - front) == MAX)

} full.wait (lock);

item = buf[front % MAX];
front++;

full.signal (lock);
lock.release() ;

return item;

}

bufl[tail % MAX] = i1tem;
taill++;

empty.signal (lock) ;
lock.release() ;

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

{

I
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Fx: Bounded Queue w/ CV | [

et .
J O 1 , put (1tem) {
lock.acquire () ; .
. . lock.acquire() ;
1f (front == tail) { . .
emoty . wait (Lock) ; 1f ((tai1l - front) == MAX) {
} Pty / full .wait (lock) ;

}

bufl[tail % MAX] = i1tem;
taill++;

empty.signal (lock) ;
lock.release() ;

item = buf[front % MAX];
front++;

full.signal (lock);
lock.release() ;

return item;

Is there a problem with this code!?
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Fx: Bounded Queue w/ CV | [

et .
get () A | put (item) {
lock.acquire () ; .
. , lock.acquire() ;
while (front == tail) { . .
ety . wait (Lock) ; while ((tail - front) == MAX) {
} PLy ’ full.wait (lock) ;

}

bufl[tail % MAX] = i1tem;
taill++;

empty.signal (lock) ;
lock.release() ;

item = buf[front % MAX];
front++;

full.signal (lock);
lock.release() ;

return item;
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Mesa vs. Hoare Semantics |

e Mesa (used widely)
e Signal puts waiter on ready list
e Signaler keeps lock and processor
 Not necessarily the waiter runs next
e Hoare (almost no one uses)
e Signal gives processor and lock to waiter
e Waiter runs when woken up by signaler

« When waiter finishes, processor/lock given back to
signaler
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FIFO Bounded Queue

(Correct under Hoare Semantics)

get () { put (1tem) {
lock.acquire () ; lock.acquire () ;
if (front == tail) { 1if ((tail - front) == MAX) {

empty.wait (lock) ; full.wait (lock);

} }
item = buf[front % MAX]; buf|[last % MAX] = item;
front++; last++;
full.signal (lock) ; empty.signal (lock) ;
lock.release () ; // CAREFUL: someone else ran
return item; lock.release() ;

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables
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Condition Variables

e ALWAYS hold lock when calling wait, signal, broadcast
e (Condition variable is sync FOR shared state
e ALWAYS hold lock when accessing shared state

e Condition variable is memoryless
e If signal when no one is waiting, no op
o If wait before signal, waiter wakes up

e Wait atomically releases lock
e What if wait, then release?
e What if release, then wait?
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Condition Variables

e When a thread is woken up from wait, it may not run
immediately
e Signal/broadcast put thread on ready list
e When lock is released, anyone might acquire it

e Wait MUST be in a loop
while (needToWait()) {
condition.Wait(lock);
y

e Simplifies implementation
e Of condition variables and locks
e Of code that uses condition variables and locks
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Synchronization Best Practices 1

e Identify objects or data structures that can be accessed by multiple threads
concurrently

e Add locks to object/module
e Grab lock on start to every method/procedure
e Release lock on finish

e If need to wait
e while(needToWait()) { condition.Wait(lock); }»
e Do not assume when you wake up, signaller just ran

e If do something that might wake someone up
e Signal or Broadcast

e Always leave shared state variables in a consistent state
e When lock is released, or when waiting
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Remember the rules...

e Use consistent structure
e Always use locks and condition variables

e Always acquire lock at beginning of procedure, release
at end

e Always hold lock when using a condition variable

e Always wait in while loop
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