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* Thanks for Prof. Adam Bates for the slides.
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What We will Learn Today

• Threading

• Programming interface – Software layers

• System calls
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A Brief note on Threading
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• Why should an application use multiple threads?

• Things suitable for threading

• Block for potentially long waits

• Use many CPU cycles 

• Respond to asynchronous events 

• Execute functions of different importance

• Execute parallel code



CS 423: Operating Systems Design

Example: Word Processor
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What if the application was single-threaded?

A Brief note on Threading
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Example: Web Server
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A Brief note on Threading

What if it the application was single-threaded?
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Common Multi-thread Software Architectures
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■ Manager/worker
■ A single thread, the manager assigns work to other 

threads, the workers. Typically, the manager handles all 

input and parcels out work to the other tasks 

■ Peer
■ Similar to the manager/worker model, but after the main 

thread creates other threads, it participates in the work.

■ Pipeline
■ A task is broken into a series of sub-operations, each of 

which is handled by a different thread. An automobile 
assembly line best describes this model 
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Common Multi-thread Software Architectures
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Pipeline

Manager / worker
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User-level Threads
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■ Advantages
■ Fast Context Switching: 

■ User level threads are implemented using user level thread libraries, 
rather than system calls, hence no call to OS and no interrupts to 
kernel

■ When a thread is finished running for the moment, it can call 
thread_yield. This instruction (a) saves the thread information in 
the thread table, and (b) calls the thread scheduler to pick another 
thread to run.

■ The procedure that saves the local thread state and the scheduler are 
local procedures, hence no trap to kernel, no context switch, no 
memory switch, and this makes the thread scheduling very fast. 

■ Customized Scheduling
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The Programming Interface!
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The POSIX Standard Specifies UNIX Interface

OS Runs on Multiple Platforms while presenting the same 
Interface:
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API is IP of OS
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Syscall API bridges diverse 
applications and hardware in the 
system stack.

Similar to the Internet Protocol 
(IP)’s role in the network stack!
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Application call libraries…

Software Layers
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Application

Portable OS Layer

Libraries (e.g., stdio.h)

Machine-dependent layer

Provided pre-compiled

Defined in headers

Input to linker (compiler)

Invoked like functions

May be “resolved” when 

program is loaded
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… libraries make OS system calls…

Software Layers
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Application

Portable OS Layer

Libraries (e.g., stdio.h)

Machine-dependent layer

system calls (read, open..)

All “high-level” code
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… system calls access drivers, machine-specific code, etc.

Software Layers
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Application

Portable OS Layer

Libraries (e.g., stdio.h)

Machine-dependent layer

Bootstrap

System initialization

Interrupt and exception 

I/O device driver

Memory management

Kernel/user mode switching

Processor management
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Some Important Syscall Families
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• Performing I/O
open, read, write, close

• Creating and managing processes
fork, exec, wait

• Communicating between processes
pipe, dup, select, connect
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Example Syscall Workflow
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read (fd, buffer, nbytes)



CS423: Operating Systems Design

Question
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#define _GNU_SOURCE

#include <unistd.h>

#include <sys/syscall.h>

#include <sys/types.h>

#include <signal.h>

int

main(int argc, char *argv[])

{

pid_t tid;

tid = syscall(SYS_gettid);

syscall(SYS_tgkill, getpid(), tid, SIGHUP);

}

Is it possible to invoke a syscall without libc wrappers?
yes.

gettid()
tgkill()

open, read, fork, wait, ...
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… file management:

POSIX Syscalls for…
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… directory management:
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POSIX Syscalls for…
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Open: more than meets the eye
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Shells… how do they work?
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A shell is a job control system 
Allows programmer to create and manage a set of 
programs to do some task

Windows, MacOS, Linux all have shells

Example: Shell cmds to compile a C program
cc –c sourcefile1.c

cc –c sourcefile2.c

ld –o program sourcefile1.o sourcefile2.o
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Shell Question
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If the shell runs at 

user-level, what 

system calls does it 

make to run each of 

the programs?
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… process management:

22

POSIX Syscalls for…

UNIX fork – system call to create a copy of the current process, and start it running
No arguments!



CS423: Operating Systems Design

UNIX Process Mgmt
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Implementing UNIX Fork
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fork
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Implementing UNIX Exec
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exec
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Simple Shell Implementation
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char *prog, **args;

int child_pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {   

child_pid = fork();      // create a child process

if (child_pid == 0) {

exec(prog, args);    // I'm the child process. Run program 

// NOT REACHED

} else {

wait(child_pid);     // I'm the parent, wait for child

return 0;

}

}
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Process Mgmt Questions
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What about Windows?
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Windows has CreateProcess
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What about Windows?
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Windows has CreateProcess



CS 423: Operating Systems Design

… miscellaneous tasks:
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POSIX Syscalls for…
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