
CS423: Operating Systems Design

Jongyul Kim

CS 423

Operating System Design:
The Programming Interface

* Thanks for Prof. Adam Bates for the slides.

1

CS423: Operating Systems Design

What We will Learn Today

• Threading

• Programming interface – Software layers

• System calls

2

CS 423: Operating Systems Design

A Brief note on Threading

3

• Why should an application use multiple threads?

• Things suitable for threading

• Block for potentially long waits

• Use many CPU cycles

• Respond to asynchronous events

• Execute functions of different importance

• Execute parallel code

CS 423: Operating Systems Design

Example: Word Processor

4

What if the application was single-threaded?

A Brief note on Threading

CS 423: Operating Systems Design

Example: Web Server

5

A Brief note on Threading

What if it the application was single-threaded?

CS423: Operating Systems Design

Common Multi-thread Software Architectures

6

■ Manager/worker
■ A single thread, the manager assigns work to other

threads, the workers. Typically, the manager handles all

input and parcels out work to the other tasks

■ Peer
■ Similar to the manager/worker model, but after the main

thread creates other threads, it participates in the work.

■ Pipeline
■ A task is broken into a series of sub-operations, each of

which is handled by a different thread. An automobile
assembly line best describes this model

CS423: Operating Systems Design

Common Multi-thread Software Architectures

7

Pipeline

Manager / worker

CS423: Operating Systems Design

User-level Threads

8

■ Advantages
■ Fast Context Switching:

■ User level threads are implemented using user level thread libraries,
rather than system calls, hence no call to OS and no interrupts to
kernel

■ When a thread is finished running for the moment, it can call
thread_yield. This instruction (a) saves the thread information in
the thread table, and (b) calls the thread scheduler to pick another
thread to run.

■ The procedure that saves the local thread state and the scheduler are
local procedures, hence no trap to kernel, no context switch, no
memory switch, and this makes the thread scheduling very fast.

■ Customized Scheduling

CS 423: Operating Systems Design 9

NetworkHardware

Machine specific part

Web Server Second Life
Yahoo
Chat

Pop Mail

Application Software

Read/Write
Standard
Output

Device
Control

File
System

Communication

Operating System (machine independent part)

P
o

rt
a

b
le

The Programming Interface!

NetworkHardware

Machine specific part

Web Server Browser Slack Pop Mail

Application Software

Read/Write
Standard
Output

Device
Control

File
System

Communication

Operating System (machine independent part)

P
o

rt
a

b
le

The POSIX Standard Specifies UNIX Interface

OS Runs on Multiple Platforms while presenting the same
Interface:

CS423: Operating Systems Design

API is IP of OS

10

Syscall API bridges diverse
applications and hardware in the
system stack.

Similar to the Internet Protocol
(IP)’s role in the network stack!

CS 423: Operating Systems Design

Application call libraries…

Software Layers

11

Application

Portable OS Layer

Libraries (e.g., stdio.h)

Machine-dependent layer

Provided pre-compiled

Defined in headers

Input to linker (compiler)

Invoked like functions

May be “resolved” when

program is loaded

CS 423: Operating Systems Design

… libraries make OS system calls…

Software Layers

12

Application

Portable OS Layer

Libraries (e.g., stdio.h)

Machine-dependent layer

system calls (read, open..)

All “high-level” code

CS 423: Operating Systems Design

… system calls access drivers, machine-specific code, etc.

Software Layers

13

Application

Portable OS Layer

Libraries (e.g., stdio.h)

Machine-dependent layer

Bootstrap

System initialization

Interrupt and exception

I/O device driver

Memory management

Kernel/user mode switching

Processor management

CS423: Operating Systems Design

Some Important Syscall Families

14

• Performing I/O
open, read, write, close

• Creating and managing processes
fork, exec, wait

• Communicating between processes
pipe, dup, select, connect

CS 423: Operating Systems Design

Example Syscall Workflow

15

read (fd, buffer, nbytes)

CS423: Operating Systems Design

Question

16

#define _GNU_SOURCE

#include <unistd.h>

#include <sys/syscall.h>

#include <sys/types.h>

#include <signal.h>

int

main(int argc, char *argv[])

{

pid_t tid;

tid = syscall(SYS_gettid);

syscall(SYS_tgkill, getpid(), tid, SIGHUP);

}

Is it possible to invoke a syscall without libc wrappers?
yes.

gettid()
tgkill()

open, read, fork, wait, ...

CS 423: Operating Systems Design

… file management:

POSIX Syscalls for…

17

CS 423: Operating Systems Design

… directory management:

18

POSIX Syscalls for…

CS423: Operating Systems Design

Open: more than meets the eye

19

CS 423: Operating Systems Design

Shells… how do they work?

20

A shell is a job control system
Allows programmer to create and manage a set of
programs to do some task

Windows, MacOS, Linux all have shells

Example: Shell cmds to compile a C program
cc –c sourcefile1.c

cc –c sourcefile2.c

ld –o program sourcefile1.o sourcefile2.o

CS423: Operating Systems Design

Shell Question

21

If the shell runs at

user-level, what

system calls does it

make to run each of

the programs?

CS 423: Operating Systems Design

… process management:

22

POSIX Syscalls for…

UNIX fork – system call to create a copy of the current process, and start it running
No arguments!

CS423: Operating Systems Design

UNIX Process Mgmt

23

CS423: Operating Systems Design

Implementing UNIX Fork

24

fork

CS423: Operating Systems Design

Implementing UNIX Exec

25

exec

CS423: Operating Systems Design

Simple Shell Implementation

26

char *prog, **args;

int child_pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {

child_pid = fork(); // create a child process

if (child_pid == 0) {

exec(prog, args); // I'm the child process. Run program

// NOT REACHED

} else {

wait(child_pid); // I'm the parent, wait for child

return 0;

}

}

CS423: Operating Systems Design

Process Mgmt Questions

27

CS423: Operating Systems Design

What about Windows?

28

Windows has CreateProcess

CS423: Operating Systems Design

What about Windows?

29

Windows has CreateProcess

CS 423: Operating Systems Design

… miscellaneous tasks:

30

POSIX Syscalls for…

	Slide 1
	Slide 2: What We will Learn Today
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Common Multi-thread Software Architectures
	Slide 7: Common Multi-thread Software Architectures
	Slide 8: User-level Threads
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

