
CS423 MP2 Walkthrough

Based on previous presentations by Jack Chen, Prof. Adam Bates and Jinghao Jia 



Overview

2

● You will develop a Rate Monotonic Scheduler for Linux using 
Linux Kernel Modules

● You will implement bound-based Admission control for the Rate 
Monotonic Scheduler

● You will learn the basic kernel API of the Linux CPU Scheduler
● You will use the slab allocator api to improve performance of 

object memory allocation in the kernel
● You will implement a simple application to test your Real-Time 

Scheduler



“ ”

“ ”

'schedule()' is the scheduler function. 
This is GOOD CODE! There probably 

won't be any reason to change this, as it 
should work well.

Linux 0.01 Comment

“And you have to realize that there are 
not very many things that have aged as 
well as the scheduler. Which is just 
another proof that scheduling is easy.” 

Linus Torvalds, 2001

3



Rate Monotonic Scheduler (RMS)

● A static scheduler has complete information about all the incoming 
tasks 
○ Arrival time
○ Deadline 
○ Runtime 
○ Etc.

● RMS assigns higher priority for tasks with higher rate (shorter period)
○ Shorter period = higher priority
○ Run highest priority task
○ Preemptive

● If B has shorter period than A, then B could preempt A when A is 
running.



Periodic Tasks Model

● Liu and Layland [1973] model: each task has 
○ P, Period, 
○ D, Deadline, and 
○ C, Processing Time (Runtime)



MP2 Overview

● You will implement RMS with an admission control policy as a 
kernel module (like MP1)

● RMS interface (via procfs) 
○ Registration: save process info like pid, etc.

○ Yield: process notifies RMS that it has completed its period 

○ De-registration: process notifies RMS that it has completed all its tasks

● Let’s look at the user program with Periodic Tasks Model 









Timer trigger



do_job()

1. Estimate compute time
a. Start with a small factorial computation.
b. Measure the time it takes to compute.
c. If the measured time is less than the desired process time, increase the 

number of factorial computations and go back to step b.



Admission Control

● We only register a process if it passes admission control
● The module will answer this question every time: 

○ Can the new set of processes still be scheduled on a single processor? 
○ Yes if and only if: 

○ Always assumes that: Processing Time less than Period

○ Ci is the runtime of task i 
○ Pi is the period to deadline of task i



Admission Control

Floating point operations are very expensive in the 
kernel. 

You should NOT use them. 
Instead use Fixed-Point arithmetic.



MP2 Process State

● A process in MP2 can be in one of three states 
○ a. READY: a new job is ready to be scheduled 
○ b. RUNNING: a job is currently running and using the CPU 
○ c. SLEEPING: job has finished execution and process is waiting for the next 

period 

● Those are states we should explicitly define in MP2 as they are 
specific to our scheduler.



Extended PCB

Not limited to this style 15



What happens when userapp sends YIELD? 

● Find the calling task 
○ Iterate the list, like MP1

● Change the state of the calling task to SLEEPING
● Calculate the time when next period begins
● Set the timer 

○ Like MP1
● Wake up dispatching thread

○ wake_up_process()
● Put the calling task to sleep (in Linux scheduler)

○ set_current_state(); schedule();



MP2 Scheduling Logic

● What happens when a wakeup timer expires? 
○ Change the task to READY 

■ Check the macro from_timer() in linux/timer.h
○ Wake up the dispatching thread

■ wake_up_process()



What should dispatching thread do?

● When dispatching thread wakes up, find highest priority 
READY task
○ Yes, MP1 list again!

● Preempt the currently running task
○ Code block in README 6a

● Set the state of new task to RUNNING
○ Also, code block in README 6a

● Put dispatching thread to sleep
○ set_current_state(); schedule();



dispatching thread is a kernel thread

● You will need to explicitly put the kernel thread to sleep 
when you’re done with your work
○ set_current_state();schedule()

● You also need to explicitly check for signals
○ Check if should stop working (signals)

■ kthread_should_stop()



Slab Allocator API

● You will use the slab allocator api to improve performance of 
object memory allocation in the kernel
○ Check “linux/slab.h”
○ Something like kmem_cache_*()



Some tips

1. Develop things incrementally, follow the mp2 description
a. Try to test one feature after you are done with it

2. Use git commits to organize your developments. When things go wrong, 
you can rollback to where it once worked.

3. Use fixed point arithmetic. Don’t use double or float
4. Ask on Piazza and come to Office Hour
5. Start early!


