
CS 423: Operating Systems Design

Tianyin Xu

CS 423
Operating System Design:
Disk Scheduling Algorithms

CS 423: Operating Systems Design

Question

2

■ What functions should file systems
provide?

CS 423: Operating Systems Design

Why Files?

3

■ Physical reality
■ Block oriented
■ Physical sector #s
■ No protection among

users of the system
■ Data might be

corrupted if machine
crashes

■ Filesystem model
■ Byte oriented
■ Named files
■ Users protected from

each other
■ Robust to machine

failures

CS 423: Operating Systems Design

File System Requirements

4

■ Users must be able to:
■ create and delete files at will.
■ read, write, and modify file contents with a minimum of

fuss about blocking, buffering, etc.
■ share each other's files with proper authorization
■ refer to files by symbolic names.
■ see a logical view of files without concern for how they are

stored.
■ retrieve backup copies of files lost through accident or

malicious destruction.

CS 423: Operating Systems Design

Disk

5

CS 423: Operating Systems Design

Disk Scheduling

6

A: Track.
B: Sector.
C: Sector of Track.
D: File

Disk Scheduling Decision — Given a series of
access requests, on which track should the disk arm
be placed next to maximize fairness, throughput, etc?

■ Which disk request is serviced first?
■ FCFS
■ Shortest seek time first
■ SCAN (Elevator)
■ C-SCAN (Circular SCAN)

CS 423: Operating Systems Design 7

Disk Access Time Example
■ Disk Parameters
■ Transfer Size is 8K bytes
■ Advertised average seek time is 12 ms
■ Disk spins at 7200 RPM
■ Transfer rate is 4 MB/sec
■ Controller Overhead is 2 ms

■ Assume idle disk (i.e., no queuing delay)

Disk Access Time = 12 ms
+ 0.5/(7200 RPM / 60)
+ 8 KB / 4 MB per sec
+ 2 ms

CS 423: Operating Systems Design

FIFO (FCFS) Order

8

■ Method
■ First come first serve

■ Pros?
■ Fairness among requests
■ In the order applications expect

■ Cons?
■ Arrival may be on random spots on the

disk (long seeks)
■ Wild swings can happen

■ Analogy:
■ FCFS elevator scheduling?

0 199

98, 183, 37, 122, 14, 124, 65, 67

53

Ti
m

e

Track

CS 423: Operating Systems Design

SSTF (Shortest Seek Time First)

9

■ Method
■ Pick the one closest on disk

■ Pros?
■ Tries to minimize seek time

■ Cons?
■ Starvation

■ Questions
■ Is SSTF optimal?
■ Is this fair to all disk accesses?
■ Are we worried about sorting

overhead?
■ Can we avoid starvation?

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 37, 14, 98, 122, 124, 183)

53

Ti
m

e

Track

CS 423: Operating Systems Design

SCAN (Elevator)

10

■ Method
■ Take the closest request in the

direction of travel
■ Pros
■ Bounded time for each request

■ Cons
■ Request at the other end will take a

while
■ Question
■ Is this fair to all disk accesses?
■ How to fix?

0 199

98, 183, 37, 122, 14, 124, 65, 67
(37, 14, 65, 67, 98, 122, 124, 183)

53

Ti
m

e

Track

CS 423: Operating Systems Design

C-SCAN (Circular SCAN)

11

■ Method
■ Like SCAN
■ But, wrap around

■ Pros
■ Uniform service time

■ Cons
■ Do nothing on the return

(i.e., higher overhead)

0 199

98, 183, 37, 122, 14, 124, 65, 67
(65, 67, 98, 122, 124, 183, 14, 37)

53

Ti
m

e

Track

CS 423: Operating Systems Design

Scheduling Algorithms

12

Algorithm Name Description

FCFS First-come first-served

SSTF Shortest seek time first; process the request that reduces
next seek time

SCAN (aka Elevator) Move head from end to end (has a current direction)

C-SCAN Only service requests in one direction (circular SCAN)

LOOK Similar to SCAN, but do not go all the way to the end of
the disk.

C-LOOK Circular LOOK.
Similar to C-SCAN, but do not go all the way to the end
of the disk.

CS 423: Operating Systems Design

Disk Scheduling Performance

13

■ What factors impact disk performance?
■ Seek Time: Time taken to move disk arm to a

specified track
■ Rotational Latency: Time taken to rotate desired

sector into position
■ Transfer Time: Time to read/write data. Depends

on rotation speed of disk and transfer amount.

Disk Access Time = Seek Time
+ Rotational Latency
+ Transfer Time
+ Controller Latency()

CS 423: Operating Systems Design 14

Disk Access Time Example
■ Disk Parameters
■ Transfer Size is 8K bytes
■ Advertised average seek time is 12 ms
■ Disk spins at 7200 RPM
■ Transfer rate is 4 MB/sec
■ Controller Overhead is 2 ms

■ Assume idle disk (i.e., no queuing delay)

Disk Access Time = 12 ms
+ 0.5/(7200 RPM / 60)
+ 8 KB / 4 MB per sec
+ 2 ms

CS 423: Operating Systems Design

Linux I/O Schedulers

15

• What disk (I/O) schedulers are available in Linux?

• As of Linux 2.6.10, it is possible to change the IO
scheduler for a given block device on the fly!

• How to enable a specific scheduler?

• SCHEDNAME = Desired I/O scheduler

• DEV = device name (e.g., sda)

$ cat /sys/block/sda/queue/scheduler
noop deadline [cfq]

^ scheduler enabled on our VMs

$ echo SCHEDNAME > /sys/block/DEV/queue/scheduler

CS 423: Operating Systems Design

Linux NOOP Scheduler

16

• Insert all incoming I/O requests into a simple FIFO

• Merges duplicate requests (results can be cached)

• When would this be useful?

CS 423: Operating Systems Design

Linux NOOP Scheduler

17

• Insert all incoming I/O requests into a simple FIFO

• Merges duplicate requests (results can be cached)

• When would this be useful?

• Solid State Drives! Avoids scheduling overhead

• Scheduling is handled at a lower layer of the I/O
stack (e.g., RAID Controller, Network-Attached)

• Host doesn’t actually know details of sector
positions (e.g., RAID controller)

CS 423: Operating Systems Design

Linux Deadline Scheduler

18

• Imposes a deadline on all I/O operations to prevent
starvation of requests

• Maintains 4 queues:

• 2 Sorted Queues (R, W), order by Sector

• 2 Deadline Queues (R, W), order by Exp Time

• Scheduling Decision:

• Check if 1st request in deadline queue has expired.

• Otherwise, serve request(s) from Sorted Queue.

• Prioritizes reads (DL=500ms) over writes (DL=5s) .Why?

CS 423: Operating Systems Design

Linux CFQ Scheduler

19

• CFQ = Completely Fair Queueing!

• Maintain per-process queues.

• Allocate time slices for each queue to access the disk

• I/O Priority dictates time slice, # requests per queue

• Asynchronous requests handled separately — batched
together in priority queues

• CFQ is often the default scheduler

CS 423: Operating Systems Design

Linux Anticipatory Scheduler

20

• Deceptive Idleness: A process appears to be finished
reading from disk, but is actually processing data.
Another (nearby) request is coming soon!

• Bad for synchronous read workloads because seek
time is increased.

• Anticipatory Scheduling: Idle for a few milliseconds
after a read operation in anticipation of another close-
by read request.

• Deprecated — CFQ can approximate.

CS 423: Operating Systems Design

Data Structures for a FS

21

Process
control
block

...

Open
file

pointer
array

Open file
table

(systemwide)
Memory Inode

Disk
inode

Data structures in a typical file system:

CS 423: Operating Systems Design

Disk Layout for a FS

22

■ Data Structures:
■ File data blocks: File contents
■ File metadata: How to find file data blocks
■ Directories: File names pointing to file metadata
■ Free map: List of free disk blocks

Super
block

File metadata
(i-node in Unix) File data blocksBoot

block

Disk layout in a typical file system:

CS 423: Operating Systems Design

Disk Layout for a FS

23

■ Superblock defines a file system
■ size of the file system
■ size of the file descriptor area
■ free list pointer, or pointer to bitmap
■ location of the file descriptor of the root directory
■ other meta-data such as permission and various times

■ For reliability, replicate the superblock

Super
block

File metadata
(i-node in Unix) File data blocksBoot

block

Disk layout in a typical file system:

CS 423: Operating Systems Design

Design Constraints

24

• How can we allocate files efficiently?

• For small files:

• Small blocks for storage efficiency

• Files used together should be stored together

• For large files:

• Contiguous allocation for sequential access

• Efficient lookup for random access

• Challenge: May not know at file creation where our
file will be small or large!!

CS 423: Operating Systems Design

Design Challenges

25

• Index structure

• How do we locate the blocks of a file?

• Index granularity

• How much data per each index (i.e., block size)?

• Free space

• How do we find unused blocks on disk?

• Locality

• How do we preserve spatial locality?

• Reliability

• What if machine crashes in middle of a file system op?

CS 423: Operating Systems Design

File Allocation

26

■ Contiguous
■ Non-contiguous (linked)
■ Tradeoffs?

CS 423: Operating Systems Design

Contiguous Allocation

27

■ Request in advance for the size of the file
■ Search bit map or linked list to locate a space
■ File header

■ first sector in file
■ number of sectors

■ Pros
■ Fast sequential access
■ Easy random access

■ Cons
■ External fragmentation
■ Hard to grow files

CS 423: Operating Systems Design

Linked Files

28

■ File header points to 1st
block on disk

■ Each block points to next
■ Pros

■ Can grow files dynamically
■ Free list is similar to a file

■ Cons
■ random access: horrible
■ unreliable: losing a block

means losing the rest

File header

null

. . .

CS 423: Operating Systems Design

Linked Allocation

29

CS 423: Operating Systems Design

Indexed File Allocation

30

Link full index
blocks together
using last entry.

CS 423: Operating Systems Design

Multilevel Indexed Files

31

Multiple levels of index blocks

CS 423: Operating Systems Design

UNIX FS Implementation

32

File position
R/W

Pointer to inode

File position
R/W

Pointer to inode

Mode

Link Count

UID

GID

File size

Times
Address of

first 10
disk blocks

Single Indirect

Double Indirect

Triple Indirect

inodeOpen file descriptionParent
File descriptor
table

Child File
descriptor
table

Unrelated process
File descriptor table

32

CS 423: Operating Systems Design

Directory Structure Org.

33

■ maps symbolic names into logical file
names
■ search
■ create file
■ list directory
■ backup, archival, file migration

CS 423: Operating Systems Design

Single-level Directory

34

CS 423: Operating Systems Design

Tree-Structured Directories

35

■ arbitrary depth of directories
■ leaf nodes are files
■ interior nodes are directories
■ path name lists nodes to traverse to find

node
■ use absolute paths from root
■ use relative paths from current working

directory pointer

CS 423: Operating Systems Design 36

Tree-Structured Directories

CS 423: Operating Systems Design

Acyclic Graph Structured Dir.’s

37

CS 423: Operating Systems Design

Symbolic Links

38

■ Symbolic links are different than regular links (often
called hard links). Created with ln -s

■ Can be thought of as a directory entry that points to
the name of another file.

■ Does not change link count for file
■ When original deleted, symbolic link remains

■ They exist because:
■ Hard links don’t work across file systems
■ Hard links only work for regular files, not directories

Hard link(s) Symbolic Link

Contents of file Contents of file
direct

direct

directsymlink

