
CS 423: Operating Systems Design

Tianyin Xu

CS 423
Operating System Design:

Virtualizing CPU and Memory

CS 423: Operating Systems Design

The Simplest Idea

2

• To run a virtual machine on top of a hypervisor,
the basic technique that is used is limited direct
execution – when we wish to “boot” a new OS
on top of the VMM, we simply jump to the
address of the first instruction and let the OS
begin running.

• What are the problems you can think about?

CS 423: Operating Systems Design

Privileged Operations

3

• What if a running application or OS tries to
perform privileged operations?
• Update TLB (assuming a SW-managed TLB)
• (Guest) OS is no longer the boss anymore.
• VMM must somehow intercept attempts to

perform privileged operations and thus retain
control of the machine.

CS 423: Operating Systems Design

Privileged Operations

4

• Privileged Operations are supposed to be done
through System Calls
• Interrupt/trap

• Interrupt/trap handlers
• OS, when it is first starting up, establishes the

address of such a routine with the hardware.

CS 423: Operating Systems Design

Normal Case

5

CS 423: Operating Systems Design

Virtualized Case

6

• What should happen?
• VMM should controls the machine
• VMM should install a trap handler that will

first get executed in kernel mode.
• VMM need handle this system call?
• The VMM doesn’t really know how to handle

the call; after all, it does not know the details
of each OS that is running and therefore does
not know what each call should do.

CS 423: Operating Systems Design

How to handle System Call?

7

• What should happen?
• VMM should controls the machine
• VMM should install a trap handler that will

first get executed in kernel mode.
• VMM need handle this system call?

CS 423: Operating Systems Design

How to handle System Call?

8

• What the VMM does know, however, is where
the OS’s trap handler is.
• When the OS booted up, it tried to install its

own trap handlers;
• It is privileged, and therefore trapped into the

VMM;
• The VMM recorded the necessary information

(i.e., where this OS’s trap handlers are in
memory).

CS 423: Operating Systems Design

How to handle System Call?

9

CS 423: Operating Systems Design

How about protection?

10

• Normal Case
• Kernel mode
• User mode

• Virtualized Case
• User mode
• Kernel mode
• Hypervisor mode

CS 423: Operating Systems Design

Virtualizing Memory

11

CS 423: Operating Systems Design

A Recap of Virtual Memory

12

CS 423: Operating Systems Design

Virtualized Environment

13

CS 423: Operating Systems Design

TLB miss handler?

14

• We have been assuming a software-managed
TLB – so the OS is handling TLB misses

• What about HW-managed TLBs (x86)?
• The hardware walks the page table on each

TLB miss and updates the TLB as need be, and
thus the VMM doesn’t have a chance to run
on each TLB miss to sneak its translation into
the system

CS 423: Operating Systems Design

Shadow Page Tables

15

• VMM must closely monitor changes the OS
makes to each page table and keep a shadow
page table that instead maps the virtual
addresses of each process to the VMM’s desired
machine pages.

CS 423: Operating Systems Design

Shadow Page Tables

16

• VMM maintains shadow page tables that map
guest virtual pages (V) directly to host physical
pages (GP).

• Guest modifications to V->GP tables synced to
VMM V->HP shadow page tables.
• Guest OS page tables marked as read-only.
• Modifications of page tables by guest OS ->

trapped to VMM.
• Shadow page tables synced to the guest OS

tables

CS 423: Operating Systems Design

Drawbacks: Shadow Page Tables

• Need to handle trap on all page table updates (and
context switches)
• Processor moves from vmx non-root (guest mode) to vmx root (host mode)

• Similar to a CPU context switch, but actually more expensive

• Maintaining consistency between guest page tables and
shadow page tables leads to frequent traps if guest has
frequency switches or page table updates

• Loss of performance due to TLB flush on every “world-switch”

• Memory overhead due to shadow copying of guest page
tables

17

CS 423: Operating Systems Design

Nested Page Tables
• Extended page-table mechanism (EPT) used to support the

virtualization of physical memory.

• Guest-physical addresses are translated by traversing a set
of EPT paging structures to produce physical addresses
that are used to access memory.

• The hardware gives us a 2nd set of page tables to do
the translation without needing VMM intervention

• Of course, the VMM is still responsible for setting up the
EPT, but this generally only needs to be done once at
guest boot time

18

CS 423: Operating Systems Design

Address Translation

19

CS 423: Operating Systems Design

Virtualized Address Translation

20

CS 423: Operating Systems Design

Advantages: EPT
• Simplified VMM design (no need to maintain any

“shadow” state or complex software MMU structures)

• Guest page table modifications need not be trapped,
hence VM exits reduced.

• Reduced memory footprint compared to shadow
page table algorithms.

21

CS 423: Operating Systems Design

Disadvantages: EPT
• TLB miss is very costly since guest-physical address to

machine address needs an extra EPT walk for each stage
of guest-virtual address translation.

22

