
CS 423: Operating Systems Design

Tianyin Xu

CS 423
Operating System Design:

"Virtual" Machines

CS 423: Operating Systems Design

Yet another level of virtualization?

2

• The OS has thus far served as the illusionist,
tricking unsuspecting applications into thinking
they have their own private CPU and a large
virtual memory, while secretly switching
between applications and sharing memory.

• Why do we need another level of indirection
(virtualization)?

CS 423: Operating Systems Design

Yet another level of virtualization?

3

CS 423: Operating Systems Design

Yet another level of virtualization?

4

CS 423: Operating Systems Design

Yet another level of virtualization?

5

CS 423: Operating Systems Design

You can build your own cloud
(on your laptop)

6

CS 423: Operating Systems Design

Containerization vs Virtualization

7

• What’s the difference from containers and
virtual machines?

• How about chroot, jails, and zones?
• What is the difference between Xen and

VMWare ESX?

CS 423: Operating Systems Design

Different Types of Virtual Machines

8

• What are they virtualizing?
• VM
• JVM
• LLVM

CS 423: Operating Systems Design

Virtualization

9

• Creation of an isomorphism that maps a virtual
guest system to a real host:
– Maps guest state S to host state V(S)
– For any sequence of operations on the guest that

changes guest state S1 to S2, there is a sequence of
operations on the host that maps state V(S1) to V(S2)

CS 423: Operating Systems Design

Important Interfaces

10

• Application programmer interface (API):
– High-level language library such as libc

• Application binary interface (ABI):
– User instructions (User ISA)
– System calls

• Hardware-software interface:
– Instruction set architecture (ISA)

CS 423: Operating Systems Design

What’s a machine?

11

• Machine is an entity that provides an interface
– From the perspective of a language…
• Machine = Entity that provides the API

– From the perspective of a process…
• Machine = Entity that provides the ABI

– From the perspective of an operating system…
• Machine = Entity that provides the ISA

CS 423: Operating Systems Design

What’s a virtual machine?

12

• Virtual machine is an entity that emulates a guest
interface on top of a host machine
– Language view:
• Virtual machine = Entity that emulates an API (e.g., JAVA) on top of

another
• Virtualizing software = compiler/interpreter

– Process view:
• Machine = Entity that emulates an ABI on top of another
• Virtualizing software = runtime

– Operating system view:
• Machine = Entity that emulates an ISA
• Virtualizing software = virtual machine monitor (VMM)

CS 423: Operating Systems Design

Purpose of a VM

13

• Emulation
– Create the illusion of having one type of machine on top

of another

• Replication (/ Multiplexing)
– Create the illusion of multiple independent smaller guest

machines on top of one host machine (e.g., for
security/isolation, or scalability/sharing)

• Optimization
– Optimize a generic guest interface for one type of host

CS 423: Operating Systems Design

Types of VMs

14

• Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.

CS 423: Operating Systems Design

Types of VMs

15

• Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.
– Process/language virtual machines (emulate ABI/API)
– System virtual machines (emulate ISA)

CS 423: Operating Systems Design

Types of VMs

16

• Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.
– Process/language virtual machines (emulate ABI/API)
– System virtual machines (emulate ISA)

CS 423: Operating Systems Design

Ex1: Multiprogramming

17

• Emulate what interface?
• For what purpose?
• On top of what?

CS 423: Operating Systems Design

Ex1: Emulation

18

• Emulate one ABI on top of another (early emulation
wants to run Windows apps on MacOS)
– Emulate an Intel IA-32 running Windows on top of

PowerPC running MacOS (i.e., run a process compiled
for IA-32/Windows on PowerPC/MacOS)
• Interpreters: Pick one guest instruction at a time, update

(simulated) host state using a set of host instructions
• Binary translation: Do the translation in one step, not one

line at a time. Run the translated binary

CS 423: Operating Systems Design

Writing an Emulator

19

• Create a simulator data structure to represent:
– Guest memory
• Guest stack
• Guest heap

– Guest registers

• Inspect each binary instruction (machine
instruction or system call)
– Update the data structures to reflect the effect of the

instruction

CS 423: Operating Systems Design

Ex2: Binary Optimization

20

• Emulate one ABI on top of itself for purposes of
optimization
– Run the process binary, collect profiling data, then

implement it more efficiently on top of the same
machine/OS interface.

CS 423: Operating Systems Design

Ex3: Language VMs

22

• Emulate one API on top of a set of different ABIs
– Compile guest API to intermediate form (e.g., JAVA

source to JAVA bytecode)
– Interpret the bytecode on top of different host ABIs

• Examples:
– JAVA
– Microsoft Common Language Infrastructure (CLI), the

foundation of .NET

CS 423: Operating Systems Design

Types of VMs

23

• Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.
– Process/language virtual machines (emulate ABI/API)
– System virtual machines (emulate ISA)

CS 423: Operating Systems Design

Types of VMs

24

• Emulate (ISA/ABI/API) for purposes of
(Emulation/Replication/Optimization) on top of
(the same/different) one.
– Process/language virtual machines (emulate ABI/API)
– System virtual machines (emulate ISA)

CS 423: Operating Systems Design

System VMs

25

• Implement VMM (ISA emulation) on bare
hardware
– Efficient
– Must wipe out current operating system to install
– Must support drivers for VMM

• Implement VMM on top of a host OS (Hosted
VM)
– Less efficient
– Easy to install on top of host OS
– Leverages host OS drivers

CS 423: Operating Systems Design

System VMs

26

• Implement VMM (ISA emulation) on bare
hardware
– Efficient
– Must wipe out current operating system to install
– Must support drivers for VMM

• Implement VMM on top of a host OS (Hosted
VM)
– Less efficient
– Easy to install on top of host OS
– Leverages host OS drivers

TYPE ONE
HYPERVISOR

TYPE TWO
HYPERVISOR

CS 423: Operating Systems Design 27

What is Xen?
What is VirtualBox?
What is KVM/Qemu?

CS 423: Operating Systems Design 28

CS 423: Operating Systems Design

Taxonomy

29

• Language VMs
– Emulate same API as host (e.g., application profiling?)
– Emulate different API than host (e.g., Java API)

• Process VMs
– Emulate same ABI as host (e.g., multiprogramming)
– Emulate different ABI than host (e.g., Java VM, MAME)

• System VMs
– Emulate same ISA as host (e.g., KVM, VBox, Xen)
– Emulate different ISA than host (e.g., MULTICS

simulator)

CS 423: Operating Systems Design

Point of Clarification

30

• Emulation: General technique for performing any kind
of virtualization (API/ABI/ISA)

• Not to be confused with Emulator in the colloquial
sense (e.g., Video Game Emulator), which often refers
to ABI emulation.

CS 423: Operating Systems Design 31

• Problem: Emulate guest ISA on host ISA

Writing an Emulator

CS 423: Operating Systems Design 32

• Problem: Emulate guest ISA on host ISA
• Create a simulator data structure to represent:
– Guest memory
• Guest stack
• Guest heap

– Guest registers

• Inspect each binary instruction (machine
instruction or system call)
– Update the data structures to reflect the effect of the

instruction

Writing an Emulator

CS 423: Operating Systems Design 33

• Problem: Emulate guest ISA on host ISA
• Solution: Basic Interpretation, switch on opcode

inst = code (PC)
opcode = extract_opcode (inst)
switch (opcode) {

case opcode1 : call emulate_opcode1 ()
case opcode2 : call emulate_opcode2 ()

…
}

Emulation

CS 423: Operating Systems Design 34

Emulation

• Problem: Emulate guest ISA on host ISA
• Solution: Basic Interpretation

new inst = code (PC)
opcode = extract_opcode (inst)
routineCase = dispatch (opcode)
jump routineCase
…

routineCase call routine_address
jump new

CS 423: Operating Systems Design

Threaded Interpretation…

35

[body of emulate_opcode1]
inst = code (PC)
opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

[body of emulate_opcode2]
inst = code (PC)
opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

CS 423: Operating Systems Design 36

• Problem: Emulate guest ISA on host ISA
• Solution: Basic Interpretation, switch on opcode

inst = code (PC)
opcode = extract_opcode (inst)
switch (opcode) {

case opcode1 : call emulate_opcode1 ()
case opcode2 : call emulate_opcode2 ()

…
}

Emulation

CS 423: Operating Systems Design 37

Emulation

• Problem: Emulate guest ISA on host ISA
• Solution: Basic Interpretation

new inst = code (PC)
opcode = extract_opcode (inst)
routineCase = dispatch (opcode)
jump routineCase
…

routineCase call routine_address
jump new

CS 423: Operating Systems Design

Threaded Interpretation…

38

[body of emulate_opcode1]
inst = code (PC)
opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

[body of emulate_opcode2]
inst = code (PC)
opcode = extract_opcode (inst)
routine_address = dispatch (opcode)
jump routine_address

CS 423: Operating Systems Design

Note: Extracting Opcodes

39

• extract_opcode (inst)
– Opcode may have options
– Instruction must extract and combine several bit ranges in the machine

word
– Operands must also be extracted from other bit ranges

• Pre-decoding
– Pre-extract the opcodes and operands for all instructions in program.
– Put them on byte boundaries…

– Also, must maintain two program counters. Why?Source Code Intermediate Code

CS 423: Operating Systems Design 40

0x1000: LW r1, 8(r2)
0x1004: ADD r3, r3, r1
0x1008: SW r3, 0(r4)

135
081 2

032
033 1

142
003 4

Note: Extracting Opcodes

0x10000: LW

0x10008: ADD

0x10010: SW

Example: MIPS Instruction Set

CS 423: Operating Systems Design

Direct Threaded Impl.

41

• Replace opcode with address of emulating
routine

Routine_address07
081 2

Routine_address08
033 1

Routine_address37
003 4

CS 423: Operating Systems Design

Binary Translation

42

• Emulation:
– Guest code is traversed and instruction classes are

mapped to routines that emulate them on the target
architecture.

• Binary translation:
– The entire program is translated into a binary of

another architecture.
– Each binary source instruction is emulated by some

binary target instructions.

CS 423: Operating Systems Design

Challenges

43

• Can we really just read the source binary and
translate it statically one instruction at a time to
a target binary?
– What are some difficulties?

CS 423: Operating Systems Design

Challenges

44

• Code discovery and binary translation
– How to tell whether something is code or data?
– We encounter a jump instruction: Is word after the

jump instruction code or data?

• Code location problem
– How to map source program counter to target

program counter?
– Can we do this without having a table as long as the

program for instruction-by-instruction mapping?

CS 423: Operating Systems Design

Things to Notice

45

• You only need source-to-target program counter
mapping for locations that are targets of jumps.
Hence, only map those locations.

• You always know that something is an instruction
(not data) in the source binary if the source program
counter eventually ends up pointing to it.

• The problem is: You do not know targets of jumps
(and what the program counter will end up pointing
to) at static analysis time!
–Why?

CS 423: Operating Systems Design

Solution

46

• Incremental Pre-decoding and Translation
– As you execute a source binary block, translate it into a target

binary block (this way you know you are translating valid
instructions)

– Whenever you jump:
• If you jump to a new location: start a new target binary block, record

the mapping between source program counter and target program
counter in map table.
• If you jump to a location already in the map table, get the target

program counter from the table
– Jumps must go through an emulation manager. Blocks are

translated (the first time only) then executed directly thereafter

CS 423: Operating Systems Design

Dynamic Basic Blocks

47

• Program is translated into chunks called “dynamic basic
blocks”, each composed of straight machine code of the
target architecture
– Block starts immediately after a jump instruction in the source

binary
– Block ends when a jump occurs

• At the end of each block (i.e., at jumps), emulation
manager is called to inspect jump destination and
transfer control to the right block with help of map table
(or create a new block and map table entry, if map miss)

CS 423: Operating Systems Design

Dynamic Binary Translation

48

Edit: The original automata didn’t execute the current block unless there was a hit!

CS 423: Operating Systems Design

Optimizations

49

• Translation chaining
– The counterpart of threading in interpreters
– The first time a jump is taken to a new destination, go

through the emulation manager as usual
– Subsequently, rather than going through the

emulation manager at that jump (i.e., once
destination block is known), just go to the right place.
• What type of jumps can we do this with?

CS 423: Operating Systems Design

Optimizations

50

• Translation chaining
– The counterpart of threading in interpreters
– The first time a jump is taken to a new destination, go

through the emulation manager as usual
– Subsequently, rather than going through the

emulation manager at that jump (i.e., once destination
block is known), just go to the right place.
• What type of jumps can we do this with?
• Fixed Destination Jumps Only!!!

CS 423: Operating Systems Design

Register Indirect Jumps?

51

• Jump destination depends on value in register.
• Must search map table for destination value

(expensive operation)
• Solution?
– Caching: add a series of if statements, comparing register

content to common jump source program counter values
from past execution (most common first).

– If there is a match, jump to corresponding target program
counter location.

– Else, go to emulation manager.

