
CS 423: Operating Systems Design

Tianyin Xu

CS 423
Operating System Design:

Midterm Review

CS 423: Operating Systems Design 2

NetworkHardware

Machine specific part

Web Server Browser Slack Pop Mail

Application Software

Read/Write Standard
Output

Device
Control

File
System Communication

Operating System (machine independent part)

Standard Operating System Interface

H
ar
dw
ar
e

Ab
st
ra
ct
io
n

La
ye
r

Overview: OS Stack
OS Runs on Multiple Platforms while presenting the same
Interface:

CS423: Operating Systems Design

Overview: OS Roles
Role #1: Referee

• Manage resource allocation between users and applications
• Isolate different users and applications from one another
• Facilitate and mediate communication between different users and applications

Role #2: Illusionist
• Allow each application to believe it has the entire machine to itself
• Create the appearance of an Infinite number of processors, (near) infinite memory
• Abstract away complexity of reliability, storage, network communication…

Role #3: Glue
• Manage hardware so applications can be machine-agnostic
• Provide a set of common services that facilitate sharing among applications
• Examples of “Glue” OS Services?

3

CS 423: Operating Systems Design

Review: System Calls

4

Function Calls

Caller and callee are in the same
Process
 - Same user
 - Same “domain of trust”

System Calls

- OS is trusted; user is not.
- OS has super-privileges; user does not
- Must take measures to prevent abuse

CS 423: Operating Systems Design

Review: Process Abstraction

5

■ Possible process states
■ Running (occupy CPU)
■ Blocked
■ Ready (does not occupy CPU)
■ Other states: suspended, terminated

Question: in a single processor machine, how many process can be in running state?

CS 423: Operating Systems Design

Review: Threads

6

Environment (resource) execution

■ (a) Three processes each with one thread
■ (b) One process with three threads

Environment (resource) execution

6

CS 423: Operating Systems Design

Kernel Abstraction: HW Support

7

CS 423: Operating Systems Design

Kernel Abstraction: CTX
Switch

8

Program
Counter

Program instructions

Code
Segment

Offset

Heap

Data
Segment

Operand

Data
Operand

OpCode

Stack
Segment

Stack
Pointer

Registers

Stack

Program
Counter

Program instructions

Code
Segment

Offset

Heap

Data
Segment

Operand

Data
Operand

OpCode

Stack
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers

CS 423: Operating Systems Design 9

The state for processes that are not running on the CPU are
maintained in the Process Control Block (PCB) data structure

Updated during
context switch

An alternate PCB diagram

Kernel Abstraction: PCBs

CS 423: Operating Systems Design

Interrupts: Model

10

The Hardware
(CPU)

“Virtual”
CPU

…

Context Switching
+ Scheduling

“Virtual”
CPU

“Virtual”
CPU

External
Devices

Interrupt
HandlerInterrupt

HandlerInterrupt
Handler

Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.

CS 423: Operating Systems Design

Interrupts: Handling

11

HALT

START Fetch next
instruction

Execute
Instruction

interrupts
disabled

Check for
INT, init INT

handler

Interrupt StageExecute StageFetch Stage

How does interrupt handling change the instruction
cycle?

CS423: Operating Systems Design

Interrupts: Handling
Table set up by OS kernel; pointers to code to run on

different events

12

CS 423: Operating Systems Design

System Calls: Under the Hood

13

read (fd, buffer, nbytes)

CS423: Operating Systems Design

Concurrency: Thread Lifecycle

14

CS423: Operating Systems Design

Concurrency: Thread State

15

CS423: Operating Systems Design

Synchronization: Principals

16

CS 423: Operating Systems Design

Queueing Lock Implementation (1 Proc)

17

Lock::acquire() {
 disableInterrupts();
 if (value == BUSY) {
 waiting.add(myTCB);
 myTCB->state = WAITING;
 next = readyList.remove();
 switch(myTCB, next);
 myTCB->state = RUNNING;
 } else {
 value = BUSY;
 }
 enableInterrupts();
}

Lock::release() {
 disableInterrupts();
 if (!waiting.Empty()) {
 next = waiting.remove();
 next->state = READY;
 readyList.add(next);
 } else {
 value = FREE;

 }
 enableInterrupts();
}

CS 423: Operating Systems Design

Multiprocessor Sync Tool!
• Read-modify-write (RMW) instructions

• Atomically read a value from memory, operate on it, and then write it
back to memory

• Intervening instructions prevented in hardware

• Examples

• Test and set

• Intel: xchgb, lock prefix

• Compare and swap

• Any of these can be used for implementing locks and
condition variables!

18

CS 423: Operating Systems Design

Test-and-set
• The test-and-set instruction is an instruction used to write 1

(set) to a memory location and return its old value as a single
atomic (i.e., non-interruptible) operation. If multiple processes may
access the same memory location, and if a process is currently
performing a test-and-set, no other process may begin another test-
and-set until the first process's test-and-set is finished.

• Please implement a lock using test-and-set (5 minutes)

19

lock:acquire() {

}

lock:release() {

}

CS423: Operating Systems Design

Synchronization: Locks

20

CS423: Operating Systems Design

Synchronization: Condition Variables

• Waiting inside a critical section
• Called only when holding a lock

• CV::Wait — atomically release lock and relinquish
processor
• Reacquire the lock when wakened

• CV::Signal — wake up a waiter, if any

• CV::Broadcast — wake up all waiters, if any

21

CS423: Operating Systems Design

Synchronization: Spinlocks
• A spinlock is a lock where the processor waits in a

loop for the lock to become free

• Assumes lock will be held for a short time

• Used to protect the CPU scheduler and to implement locks

22

Spinlock::acquire() {
 while (testAndSet(&lockValue) == BUSY)
 ;
}

Spinlock::release() {
 lockValue = FREE;
 memorybarrier();
}

CS423: Operating Systems Design

Semaphores
• Semaphore has a non-negative integer value

• P() atomically waits for value to become > 0, then decrements

• V() atomically increments value (waking up waiter if needed)

• Semaphores are like integers except:

• Only operations are P and V

• Operations are atomic

• If value is 1, two P’s will result in value 0 and one waiter

23

CS 423: Operating Systems Design

Scheduling: Principals

24

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin

■ What is an optimal algorithm in the sense
of maximizing the number of jobs finished
(i.e., minimizing average response time)?

CS 423: Operating Systems Design

Scheduling: Mixed Workloads??

25

CS 423: Operating Systems Design 26

Scheduling: MFQ

CS 423: Operating Systems Design

Scheduling: Early Linux

27

■ Linux 1.2: circular queue w/ round-robin policy.
■ Simple and minimal.
■ Did not meet many of the aforementioned goals

■ Linux 2.2: introduced scheduling classes (real-
time, non-real-time).

/* Scheduling Policies
*/
#define SCHED_OTHER 0 // Normal user tasks (default)
#define SCHED_FIFO 1 // RT: Will almost never be preempted
#define SCHED_RR 2 // RT: Prioritized RR queues

CS 423: Operating Systems Design

Scheduling: CFS

28

■ Merged into the 2.6.23 release of the Linux kernel
and is the default scheduler.

■ Scheduler maintains a red-black tree where nodes are
ordered according to received virtual execution time

■ Node with smallest virtual received execution time is
picked next

■ Priorities determine accumulation rate of virtual
execution time
■ Higher priority à slower accumulation rate

CS 423: Operating Systems Design

Scheduling: Red-Black Trees

29

■ CFS dispenses with a run queue and instead
maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:
1. Each node is red or black
2. Root node is black
3. All leaves (NIL) are black
4. If node is red, both children are black
5. Every path from a given node to its

descendent NIL leaves contains the
same number of black nodes

Takeaway: In an RB Tree, the path from the root to the farthest leaf is no more
than twice as long as the path from the root to the nearest leaf.

CS 423: Operating Systems Design

Scheduling: Multi-Processor

30

• CPU affinity would seem to necessitate a multi-queue
approach to scheduling… but how?

• Asymmetric Multiprocessing (AMP): One processor (e.g.,
CPU 0) handles all scheduling decisions and I/O
processing, other processes execute only user code.

• Symmetric Multiprocessing (SMP): Each processor is self-
scheduling. Could work with a single queue, but also
works with private queues.

• Potential problems?

CS 423: Operating Systems Design

Virtual Memory

31

■ Provide user with virtual memory that is as big as
user needs

■ Store virtual memory on disk
■ Cache parts of virtual memory being used in real

memory
■ Load and store cached virtual memory without user

program intervention

CS 423: Operating Systems Design

Virtual Memory Systems

32

■ Fixed partitions
■ Internal fragmentation

■ Segmentation (variable partition)
■ External fragmentation

■ Paging

1
2
3
4

Memory Virtual Memory Stored on Disk

1 2 3 4 5 6 7 81 2 3 4

Page Table

Monitor Job 1 Job 2 Job 3 Job 4 Free1

CS 423: Operating Systems Design

Page Faults

33

■ Occur when we access a virtual page that is not
mapped into any physical page
■ A fault is triggered by hardware

■ Page fault handler (in OS’s VM subsystem)
■ Find if there is any free physical page available

■ If no, evict some resident page to disk (swapping space)
■ Allocate a free physical page
■ Load the faulted virtual page to the prepared physical

page
■ Modify the page table

CS 423: Operating Systems Design

More Q&A

34

