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Overview: OS Stack
OS Runs on Multiple Platforms while presenting the same 
Interface:
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Overview: OS Roles
Role #1: Referee

• Manage resource allocation between users and applications
• Isolate different users and applications from one another 
• Facilitate and mediate communication between different users and applications 

Role #2: Illusionist
• Allow each application to believe it has the entire machine to itself
• Create the appearance of an Infinite number of processors, (near) infinite memory
• Abstract away complexity of reliability, storage, network communication…

Role #3: Glue
• Manage hardware so applications can be machine-agnostic
• Provide a set of common services that facilitate sharing among applications
• Examples of “Glue” OS Services?

3



CS 423: Operating Systems Design

Review: System Calls
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Function Calls

Caller and callee are in the same
Process
  - Same user
  - Same “domain of trust”

System Calls

- OS is trusted; user is not.
- OS has super-privileges; user does not
- Must take measures to prevent abuse
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Review: Process Abstraction
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■ Possible process states
■ Running (occupy CPU)
■ Blocked
■ Ready (does not occupy CPU)
■ Other states: suspended, terminated

Question: in a single processor machine, how many process can be in running state?
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Review: Threads
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Environment (resource) execution

■ (a) Three processes each with one thread
■ (b) One process with three threads

Environment (resource) execution
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Kernel Abstraction: HW Support
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Kernel Abstraction: CTX 
Switch
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The state for processes that are not running on the CPU are 
maintained in the Process Control Block (PCB) data structure

Updated during 
context switch

An alternate PCB diagram

Kernel Abstraction: PCBs
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Interrupts: Model
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Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.
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Interrupts: Handling
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How does interrupt handling change the instruction 
cycle?
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Interrupts: Handling
Table set up by OS kernel; pointers to code to run on 

different events
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System Calls: Under the Hood
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read (fd, buffer, nbytes)
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Concurrency: Thread Lifecycle
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Concurrency: Thread State
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Synchronization: Principals
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Queueing Lock Implementation (1 Proc)
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Lock::acquire() { 
    disableInterrupts(); 
    if (value == BUSY) { 
        waiting.add(myTCB);
        myTCB->state = WAITING;
        next = readyList.remove();
        switch(myTCB, next);
        myTCB->state = RUNNING;
    } else { 
        value = BUSY; 
    } 
    enableInterrupts(); 
}

Lock::release() { 
    disableInterrupts();
    if (!waiting.Empty()) { 
        next = waiting.remove();
        next->state = READY;    
        readyList.add(next); 
    } else {
   value = FREE; 

    } 
    enableInterrupts(); 
} 
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Multiprocessor Sync Tool!
• Read-modify-write (RMW) instructions

• Atomically read a value from memory, operate on it, and then write it 
back to memory

• Intervening instructions prevented in hardware

• Examples

• Test and set

• Intel: xchgb, lock prefix

• Compare and swap

• Any of these can be used for implementing locks and 
condition variables!
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Test-and-set
• The test-and-set instruction is an instruction used to write 1 

(set) to a memory location and return its old value as a single 
atomic (i.e., non-interruptible) operation. If multiple processes may 
access the same memory location, and if a process is currently 
performing a test-and-set, no other process may begin another test-
and-set until the first process's test-and-set is finished.

• Please implement a lock using test-and-set (5 minutes)
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lock:acquire() {

} 

lock:release() {

}
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Synchronization: Locks
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Synchronization: Condition Variables

• Waiting inside a critical section
• Called only when holding a lock

• CV::Wait — atomically release lock and relinquish 
processor
• Reacquire the lock when wakened

• CV::Signal — wake up a waiter, if any

• CV::Broadcast — wake up all waiters, if any
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Synchronization: Spinlocks
• A spinlock is a lock where the processor waits in a 

loop for the lock to become free

• Assumes lock will be held for a short time

• Used to protect the CPU scheduler and to implement locks
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Spinlock::acquire() {
   while (testAndSet(&lockValue) == BUSY)
      ;
}

Spinlock::release() {
   lockValue = FREE;
  memorybarrier();
}
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Semaphores
• Semaphore has a non-negative integer value

• P() atomically waits for value to become > 0, then decrements

• V() atomically increments value (waking up waiter if needed)

• Semaphores are like integers except:

• Only operations are P and V

• Operations are atomic

• If value is 1, two P’s will result in value 0 and one waiter
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Scheduling: Principals
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■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin

■ What is an optimal algorithm in the sense 
of maximizing the number of jobs finished 
(i.e., minimizing average response time)? 
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Scheduling: Mixed Workloads??
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Scheduling: MFQ
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Scheduling: Early Linux
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■ Linux 1.2: circular queue w/ round-robin policy.
■ Simple and minimal.
■ Did not meet many of the aforementioned goals

■ Linux 2.2: introduced scheduling classes (real-
time, non-real-time).

/* Scheduling Policies
*/
#define SCHED_OTHER  0 // Normal user tasks (default)
#define SCHED_FIFO   1 // RT: Will almost never be preempted
#define SCHED_RR     2 // RT: Prioritized RR queues
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Scheduling: CFS
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■ Merged into the 2.6.23 release of the Linux kernel 
and is the default scheduler.

■ Scheduler maintains a red-black tree where nodes are 
ordered according to received virtual execution time

■ Node with smallest virtual received execution time is 
picked next

■ Priorities determine accumulation rate of virtual 
execution time
■ Higher priority à slower accumulation rate
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Scheduling: Red-Black Trees
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■ CFS dispenses with a run queue and instead 
maintains a time-ordered red-black tree. Why?

An RB tree is a BST w/ the constraints:
1. Each node is red or black
2. Root node is black
3. All leaves (NIL) are black
4. If node is red, both children are black
5. Every path from a given node to its 

descendent NIL leaves contains the 
same number of black nodes

Takeaway: In an RB Tree, the path from the root to the farthest leaf is no more 
than twice as long as the path from the root to the nearest leaf.
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Scheduling: Multi-Processor
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• CPU affinity would seem to necessitate a multi-queue 
approach to scheduling… but how?

• Asymmetric Multiprocessing (AMP): One processor (e.g., 
CPU 0) handles all scheduling decisions and I/O 
processing, other processes execute only user code.

• Symmetric Multiprocessing (SMP): Each processor is self-
scheduling. Could work with a single queue, but also 
works with private queues.

• Potential problems?
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Virtual Memory

31

■ Provide user with virtual memory that is as big as 
user needs

■ Store virtual memory on disk
■ Cache parts of virtual memory being used in real 

memory
■ Load and store cached virtual memory without user 

program intervention
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Virtual Memory Systems
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■ Fixed partitions
■ Internal fragmentation

■ Segmentation (variable partition)
■ External fragmentation

■ Paging

1
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Memory Virtual Memory Stored on Disk
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Page Table

Monitor Job 1 Job 2 Job 3 Job 4 Free1
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Page Faults
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■ Occur when we access a virtual page that is not 
mapped into any physical page
■ A fault is triggered by hardware

■ Page fault handler (in OS’s VM subsystem)
■ Find if there is any free physical page available

■ If no, evict some resident page to disk (swapping space)
■ Allocate a free physical page
■ Load the faulted virtual page to the prepared physical 

page
■ Modify the page table
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More Q&A

34


