CS 423
Operating System Design:
Historical Memory
Management

Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS 423: Operating Systems Design

Storage Hierarchy

CPU Registers Qize

Performance

32-64 bits

4-128 words

. 512-16k words
©

CS 423: Operating Systems Design

Problem Statement

We have limited amounts of tfast resources,
and large amounts of slower resources...

How to create the illusion of an abundant fast resource?

CS 423: Operating Systems Design

History: Mem Overlays 1

Secondary Storage

OK

5k

Overlay Manager
7k

12k

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays

OK

5k

Overlay Manager
7k

12k

[

Secondary Storage

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays

OK

5k

Overlay Manager
7k

12k

[

Secondary Storage

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays 1

Secondary Storage

OK

5k
Overlay Manager /
7k

12k

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays 1

Secondary Storage

OK

5k
Overlay Manager /
7k

12k

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays 1

Secondary Storage

OK

5k

Overlay Manager
7k

\

12k

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays 1

Secondary Storage

OK

5k

Overlay Manager

7k

\

12k

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

History: Mem Overlays

OK

5k

Overlay Manager
7k

12k

[

Secondary Storage

Used when process memory requirement exceeded the physical memory space

CS 423: Operating Systems Design

W
e Di
oartitions (possibly unequal)

History: Fixed Partrtion Allocation [(

oproach: Multiprogramming
th fixed memory partitions

vides memory into n fixed

e Problem?

Ok

4k

16k

64k
Free Space

128k L]

CS 423: Operating Systems Design

W
e Di
partitions (possible unequal)

History: Fixed Partrtion Allocation [

oproach: Multiprogramming
th fixed memory partitions

vides memory into n fixed

e Problem?

Ok

4k

16k

64k
Free Space

128k L]

CS 423: Operating Systems Design

e Di
partitions (possible unequal)

History: Fixed Partrtion Allocation [

oproach: Multiprogramming
ith fixed memory partitions

vides memory into n fixed

e Problem?

Internal Fragmentation

Ok

4k

16k

64k
Free Space

128k L]

CS 423: Operating Systems Design

History: Fixed Partrtion Allocation [

« Separate input queue for each partition
= Sorting incoming jobs into separate queues

= Inefficient utilization of memory
. When the queue for a large partition is empty but the
queue for a small partition is full. Small jobs have to wait
to get into memory even though plenty of memory is
free.

= One single input queue for all partitions.
= Allocate a partition where the job fits in.

CS 423: Operating Systems Design

History: Relocation

Correct starting address when a program should start in the
memory

Different jobs will run at different addresses

- When a program is linked, the linker must know at what address the
program will begin in memory.

Enter “Logical addresses”

- Logical address space , range (0 to max)

- Physical addresses, Physical address space range (R+0 to R+max) for
nase value R.

- User program never sees the real physical addresses

Relocation register
. Mapping requires hardware with the base register

CS 423: Operating Systems Design

History: Relocation Register

Base Register
BA

Physical
Address

CS 423: Operating Systems Design

artrtion

Job 4

| [Monitor | Job 1| Job2 | Job3 |

Memory wasted by External Fragmentation

CS 423: Operating Systems Design

History: Storage Placement Strategy][

Blels_t_FLil_t_? - - - _ - _ _ _

. FIrst Fit?

- Nexthitz

O "UIDL TFilz

[[I PR D I G P

CS 423: Operating Systems Design

~ e]

Virtual Memory

= Provide user with virtual memory that is as big as
user needs

= Store virtual memory on disk

= Cache parts of virtual memory being used in real
memory

« Load and store cached virtual memory without user
program intervention

ITSIAN'ILLUSIONS

CS 423: Operating Systems Design

Paging
Request Page 3...

Page Table
Memory VM Frame

CS 423: Operating Systems Design

Paging
Request Page 1...

Page Table
Memory VM Frame

CS 423: Operating Systems Design

Paging

Request Page 6...

Page Table
Memory VM Frame

CS 423: Operating Systems Design

Paging

Request Page 2...

CS 423: Operating Systems Design

Memory

Page Table

v

Frame

1

2
3
4

Paging
Request Page 8. Swap Page 1 to Disk First...

Page Table
Memory VM Frame

CS 423: Operating Systems Design

Paging
Request Page 8. ... now load Page 8 into Memory.

Page Table
Memory VM Frame

1

2
3
4

CS 423: Operating Systems Design

Shared Pages

Page
Table

Job 1

Job 2

Page
Table

Note: Virtual Memory also supports shared pages.

CS 423: Operating Systems Design

O 0| -~ -

Physical
Memory

Page
Table

1

|+ | W

e 0 =~ O O & W NN -

Page Mapping Hardware

Page Table
V.

L 4

0

"A

|
0
|
1
(1) Physical Memo

Physical Address (F,D)

[

Virtual Address (P,D) Virtual Memory X

"D

CS 423: Operating Systems Design

Page Mapping Hardware

ual Memory
004

Virtual Address (004006) YT

Page Table

0 Vo

L 4

‘A

1006

|
0
|
1
(1) Physical Memo

Physical Address (F,D) 005

1006

Page size 1000
Number of Possible Virtual Pages 1000
Number of Page Frames 8

CS 423: Operating Systems Design

Page Faults [(

= Occur when we access a virtual page that is not
mapped into any physical page
= A fault is triggered by hardware

« Page fault handler (in OS’s VM subsystem)

= Find if there is any free physical page available
. If no, evict some resident page to disk (swapping space)

= Allocate a free physical page
= Load the faulted virtual page to the prepared physical

Page
= Modify the page table

CS 423: Operating Systems Design

Reasoning about Page [ables [(

= On a 32 bit system we have 2”32 B virtual address space
« .., @ 32 bit register can store 232 values
« # of pages are 2" (e.g., 512 B, 1 KB, 2 KB, 4 KB...)
= Given a page size, how many pages are needed?
« €.9., If 4 KB pages (212 B), then 2/°32/2"12=...
« 2720 pages required to represent the address space

« But! each page entry takes more than 1 Byte of space to
represent.

= SUppose page size is 4 bytes (Why?)

« (2%2) * 27 20 = 4 MB of space required to represent our
page table in physical memory.

« What is the consequence of this?

CS 423: Operating Systems Design

