
CS423: Operating Systems Design

CS 423
Operating System Design:

Synchronization

Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

Synchronization Motivation

2

CS423: Operating Systems Design

Can this panic?

3

CS423: Operating Systems Design

Why Reordering?

4

CS423: Operating Systems Design

Too Much Milk!

5

CS423: Operating Systems Design

Too Much Milk!

6

SOLUTION

Make your own
oat milk at home

srsly tho — https://minimalistbaker.com/make-oat-milk/

CS423: Operating Systems Design

Definitions

7

CS423: Operating Systems Design

Too Much Milk, Try #1

8

CS423: Operating Systems Design 9

Too Much Milk, Try #2

CS423: Operating Systems Design

Too Much Milk, Try #3

10

CS423: Operating Systems Design

Takeaways

11

CS423: Operating Systems Design

Synchronization Roadmap

12

CS423: Operating Systems Design

Locks

13

CS423: Operating Systems Design 14

Too Much Milk, Try #4

CS423: Operating Systems Design

Ex: Lock Malloc/Free

15

CS423: Operating Systems Design

Rules for Using Locks

16

CS423: Operating Systems Design

Ex: Thread-Safe Bounded Queue

18

CS423: Operating Systems Design

Question(s)

19

CS423: Operating Systems Design

• Take 1: using memory load/store

• See too much milk solution/Peterson’s algorithm

• Take 2:

• Lock::acquire()

• Lock::release()

20

Implementing Locks

CS423: Operating Systems Design

Lock Implementation for Uniprocessor?

21

Lock::acquire() {
disableInterrupts();
if (value == BUSY) {

waiting.add(myTCB);
myTCB->state = WAITING;
next = readyList.remove();
switch(myTCB, next);
myTCB->state = RUNNING;

} else {
value = BUSY;

}
enableInterrupts();

}

Lock::release() {
disableInterrupts();
if (!waiting.Empty()) {

next = waiting.remove();
next->state = READY;
readyList.add(next);

} else {
value = FREE;
}
enableInterrupts();

}

CS423: Operating Systems Design

Condition Variables
• Waiting inside a critical section
• Called only when holding a lock

• CV::Wait — atomically release lock and relinquish
processor
• Reacquire the lock when wakened

• CV::Signal — wake up a waiter, if any

• CV::Broadcast — wake up all waiters, if any

22

CS423: Operating Systems Design

Condition Variables

23

methodThatWaits() {
lock.acquire();
// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// Read/write shared state
lock.release();

}

CS423: Operating Systems Design 24

Ex: Bounded Queue w/ CV

get() {
lock.acquire();
while (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
while ((tail – front) == MAX) {

full.wait(lock);
}
buf[tail % MAX] = item;
tail++;
empty.signal(lock);
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design

Pre/Post Conditions

25

• What is state of the bounded buffer at lock acquire?
• front <= tail
• front + MAX >= tail

• These are also true on return from wait

• And at lock release

• Allows for proof of correctness

CS423: Operating Systems Design

Pre/Post Conditions

26

methodThatWaits() {
lock.acquire();
// Pre-condition: State is consistent

// Read/write shared state

while (!testSharedState()) {
cv.wait(&lock);

}
// WARNING: shared state may
// have changed! But
// testSharedState is TRUE
// and pre-condition is true

// Read/write shared state
lock.release();

}

methodThatSignals() {
lock.acquire();
// Pre-condition: State is consistent

// Read/write shared state

// If testSharedState is now true
cv.signal(&lock);

// NO WARNING: signal keeps lock

// Read/write shared state
lock.release();

}

CS423: Operating Systems Design

Condition Variables

27

• ALWAYS hold lock when calling wait, signal, broadcast
• Condition variable is sync FOR shared state
• ALWAYS hold lock when accessing shared state

• Condition variable is memoryless
• If signal when no one is waiting, no op
• If wait before signal, waiter wakes up

• Wait atomically releases lock
• What if wait, then release?
• What if release, then wait?

CS423: Operating Systems Design

Condition Variables

28

• When a thread is woken up from wait, it may not run
immediately

• Signal/broadcast put thread on ready list
• When lock is released, anyone might acquire it

• Wait MUST be in a loop
while (needToWait()) {

condition.Wait(lock);
}

• Simplifies implementation
• Of condition variables and locks
• Of code that uses condition variables and locks

CS423: Operating Systems Design

Mesa vs. Hoare Semantics
• Mesa

• Signal puts waiter on ready list

• Signaller keeps lock and processor

• Hoare

• Signal gives processor and lock to waiter

• When waiter finishes, processor/lock given back to
signaller

• Nested signals possible!

29

CS423: Operating Systems Design

FIFO Bounded Queue
(Hoare Semantics)

30

get() {
lock.acquire();
if (front == tail) {

empty.wait(lock);
}
item = buf[front % MAX];
front++;
full.signal(lock);
lock.release();
return item;

}

put(item) {
lock.acquire();
if ((tail – front) == MAX) {

full.wait(lock);
}
buf[last % MAX] = item;
last++;
empty.signal(lock);

// CAREFUL: someone else ran
lock.release();

}

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design

FIFO Bounded Queue
(Mesa Semantics)

• Create a condition variable for every waiter

• Queue condition variables (in FIFO order)

• Signal picks the front of the queue to wake up

• CAREFUL if spurious wakeups!

•Easily extends to case where queue is LIFO, priority,
priority donation, …

•With Hoare semantics, not as easy
31

CS423: Operating Systems Design

Synchronization Best Practices

33

• Identify objects or data structures that can be accessed by multiple threads
concurrently

• Add locks to object/module
• Grab lock on start to every method/procedure
• Release lock on finish

• If need to wait
• while(needToWait()) { condition.Wait(lock); }
• Do not assume when you wake up, signaller just ran

• If do something that might wake someone up
• Signal or Broadcast

• Always leave shared state variables in a consistent state
• When lock is released, or when waiting

CS423: Operating Systems Design

Remember the rules…
• Use consistent structure

• Always use locks and condition variables

• Always acquire lock at beginning of procedure, release
at end

• Always hold lock when using a condition variable

• Always wait in while loop

34

