CS 423
Operating System Design:
Synchronization

Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design



Synchronization Motivation [ (

 When threads concurrently read/write shared
memory, program behavior is undefined

— Two threads write to the same variable; which one
should win?

e Thread schedule is non-deterministic

— Behavior changes when re-run program
 Compiler/hardware instruction reordering
* Multi-word operations are not atomic

CS423: Operating Systems Design



Can this panic?

Thread 1 Thread 2

p = someComputation(); while (Iplnitialized)
plnitialized = true; ;

g = someFunction(p);

if (g !=someFunction(p))

panic

CS423: Operating Systems Design 3



Why Reordering!

* Why do compilers reorder instructions?

— Efficient code generation requires analyzing control/
data dependency

— If variables can spontaneously change, most compiler
optimizations become impossible

* Why do CPUs reorder instructions?

— Write buffering: allow next instruction to execute
while write is being completed

Fix: memory barrier
— Instruction to compiler/CPU
— All ops before barrier complete before barrier returns
— No op after barrier starts until barrier returns

CS423: Operating Systems Design



1oo Much Milk

Person A Person B
12:30 Look in fridge. Out of milk.
12:35 Leave for store.
12:40 Arrive at store. Look in fridge. Out of milk.
12:45 Buy milk. Leave for store.
12:50 Arrive home, put milk away.  Arrive at store.
12:55 Buy milk.
1:00 Arrive home, put milk away.
Oh no!

CS423: Operating Systems Design 5



1oo Much Milk
SOLUTION

Make your own
oat milk at home

srsly tho — https://minimalistbaker.com/make-oat-milk/

CS423: Operating Systems Design 0



Definrtions

Race condition: output of a concurrent program depends on the
order of operations between threads

Mutual exclusion: only one thread does a particular thing at a
time
— Critical section: piece of code that only one thread can execute
at once

Lock: prevent someone from doing something

— Lock before entering critical section, before accessing shared
data

— Unlock when leaving, after done accessing shared data
— Wait if locked (all synchronization involves waiting!)

CS423: Operating Systems Design /



Too Much Milk, Try #1 T

* Correctness property
— Someone buys if needed (liveness)
— At most one person buys (safety)

* Try #1: leave a note
if (Inote)
if (Imilk) {
leave note
buy milk
remove note

CS423: Operating Systems Design 8



Too Much Milk, Try #2

Thread A Thread B
leave note A leave note B
if (Inote B) { if (InoteA) {
if (Imilk) if (!milk)
buy milk buy milk
} }
remove note A remove note B

CS423: Operating Systems Design 9



Too Much Milk, Try #3

Thread A Thread B

leave note A leave note B

while (note B) // X if (InoteA){ //Y
do nothing; if (Imilk)

if (!milk) buy milk
buy milk; }

remove note A remove note B

Can guarantee at X and Y that either:
(i) Safe for me to buy

(ii) Other will buy, ok to quit

CS423: Operating Systems Design



| akeaways

* Solution is complicated

— “obvious” code often has bugs

* Modern compilers/architectures reorder
Instructions

— Making reasoning even more difficult

* Generalizing to many threads/processors
— Even more complex: see Peterson’s algorithm

CS423: Operating Systems Design




Synchronization Roadmap |

Concurrent Applications

Shared Objects

Bounded Buffer Barrier

Synchronization Variables

Semaphores Locks  Condition Variables

Atomic Instructions

Interrupt Disable Test-and-Set

Hardware

Multiple Processors Hardware Interrupts

CS423: Operating Systems Design



| ocks

* Lock::acquire
— wait until lock is free, then take it

* Lock::release
— release lock, waking up anyone waiting for it

1. At most one lock holder at a time (safety)
2. If no one holding, acquire gets lock (progress)

3. If all lock holders finish and no higher priority
waiters, waiter eventually gets lock
(progress)

CS423: Operating Systems Design



Too Much Milk, Try #4 1

Locks allow concurrent code to be much simpler:
lock.acquire();
if (!milk)
buy milk
lock.release();

CS423: Operating Systems Design



Ex: Lock Malloc/Free

char *malloc (n) { void free(char *p) {
heaplock.acquire(); heaplock.acquire();
p = allocate memory put p back on free list
heaplock.release(); heaplock.release();
return p; }

CS423: Operating Systems Design



Rules for Using Locks

* Lock is initially free

* Always acquire before accessing shared data
structure

— Beginning of procedure!
* Always release after finishing with shared data
— End of procedure!
— Only the lock holder can release
— DO NOT throw lock for someone else to release
* Never access shared data without lock
— Danger!

CS423: Operating Systems Design



Ex: Thread-Safe Bounded Queue ][

tryget() { tryput(item) {
item = NULL; lock.acquire();
lock.acquire(); if ((tail — front) < size) {
if (front < tail) { buf[tail % MAX] = item;
item = buf[front % MAX]; tail++;
front++: }
) lock.release();
lock.release(); }
return item;
}

Initially: front = tail = 0; lock = FREE; MAX is buffer capacity

CS423: Operating Systems Design



Question(s)

e |ftryget returns NULL, do we know the buffer
IS empty?

* |f we poll tryget in a loop, what happens to a
thread calling tryput?

CS423: Operating Systems Design



Implementing Locks

« Take |: using memory load/store

« See too much milk solution/Peterson’s algorithm
« Take 2:

* Lock:acquire()

» Lock:release()

CS423: Operating Systems Design



Lock Implementation for Uniprocessor? ][

Lock::acquire() {
disableInterrupts();
1f (value == BUSY) {
waiting.add(myTCB) ;

myTCB->state = WAITING;
next = readyList.remove();

switch(myTCB, next);

myTCB->state = RUNNING;

} else {

value = BUSY;
}

enableInterrupts();

CS423: Operating Systems Design

Lock::release() {

disableInterrupts();

1f (!waiting.Empty()) {
next = wailiting.remove();
next->state = READY;

readyList.add(next);
} else {

value = FREE;
}

enableInterrupts();




Condition Variables

« Waiting inside a critical section
« Called only when holding a lock

« CV::Wait — atomically release lock and relinquish
processor
« Reacquire the lock when wakened

« CV::Sighal — wake up a waiter, if any

« CV::Broadcast — wake up all waiters, if any

CS423: Operating Systems Design



Condition Variables

methodThatWaits () { methodThatSignals() {
lock.acquire(); lock.acquire();
// Read/write shared state // Read/write shared state
while (!testSharedState()) { // If testSharedState is now true
cv.walilt(&lock); cv.signal(&lock);
}
// Read/write shared state // Read/write shared state
lock.release(); lock.release();

CS423: Operating Systems Design



Ex: Bounded Queue w/ CV |

get () { _ put(item) {
lock.acquire(); lock.acquire();
while (front == tail) { e ,

while ((tail — front) == MAX) {

empty.wait(lock); full.wait(lock);
} ° 4
. — ) ° }
ltem = buf[front % MAX]; buf[tail % MAX] = item;
front++;

tail++;
empty.signal(lock);
lock.release();

full.signal(lock);
lock.release();
return item;

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design



Pre/Post Conditions

e What is state of the bounded buffer at lock acquire?
o front <= tail
e front + MAX >= talil

e These are also true on return from wait

e And at lock release

o Allows for proof of correctness

CS423: Operating Systems Design



Pre/Post Conditions

methodThatWaits () {
lock.acquire();
// Pre-condition: State is consistent

methodThatSignals() {
lock.acquire();
// Pre-condition: State is consistent
Read/write shared state
/7 /wrl // Read/write shared state

while (!testSharedState()) {

cv.wait(&lock); // If testSharedState is now true

cv.signal(&lock);

}
// WARNING: shared state may

// have changed! But
// testSharedState is TRUE
// and pre-condition is true

// NO WARNING: signal keeps lock
// Read/write shared state
lock.release();

// Read/write shared state
lock.release();

CS423: Operating Systems Design



Condition Variables

e ALWAYS hold lock when calling wait, signal, broadcast
e (Condition variable is sync FOR shared state
e ALWAYS hold lock when accessing shared state

e (Condition variable is memoryless
e If signal when no one is waiting, no op
o If wait before signal, waiter wakes up

e Wait atomically releases lock
o What if wait, then release?
e What if release, then wait?

CS423: Operating Systems Design



Condition Variables

e When a thread is woken up from wait, it may not run
immediately
e Signal/broadcast put thread on ready list
e When lock is released, anyone might acquire it

e Wait MUST be in a loop
while (needToWait()) {
condition.Wait(lock);
}

o Simplifies implementation
e Of condition variables and locks
e Of code that uses condition variables and locks

CS423: Operating Systems Design



Mesa vs. Hoare Semantics |

* Mesa
» Signal puts waiter on ready list
» Signaller keeps lock and processor
* Hoare
» Signal gives processor and lock to waiter

« When waiter finishes, processor/lock given back to
signaller

* Nested signals possible!

CS423: Operating Systems Design



FIFO Bounded Queue

(Hoare Semantics)

get () { put (item) {

lock.acquire(); lock.acquire();

if (front == tail) { if ((tail — front) == MAX) {
empty.wait(lock); full.wait(lock);

} }

item = buf[front % MAX]; buf[last % MAX] = item;

front++; last++;

full.signal(lock); empty.signal(lock);

// CAREFUL: someone else ran
lock.release();

lock.release();
return item;

Initially: front = tail = 0; MAX is buffer capacity
empty/full are condition variables

CS423: Operating Systems Design



FIFO Bounded Queue

(Mesa Semantics)
* Create a condition variable for every waiter
* Queue condition variables (in FIFO order)
* Signal picks the front of the queue to wake up

 CAREFUL if spurious wakeups!

* Easily extends to case where queue is LIFO, priority,
priority donation, ...

* With Hoare semantics, not as easy

CS423: Operating Systems Design



Synchronization Best Practices [ |

e Identify objects or data structures that can be accessed by multiple threads
concurrently

e Add locks to object/module
e Grab lock on start to every method/procedure
e Release lock on finish

e If need to wait
e while(needToWait()) { condition.Wait(lock); }
e Do not assume when you wake up, signaller just ran

e If do something that might wake someone up
e Signal or Broadcast

e Always leave shared state variables in a consistent state
e When lock is released, or when waiting

CS423: Operating Systems Design



Remember the rules. .. [ |

« Use consistent structure
« Always use locks and condition variables

 Always acquire lock at beginning of procedure, release
at end

« Always hold lock when using a condition variable

 Always wait in while loop

CS423: Operating Systems Design



