1[ILLINOIS

AAAAAAAAAAAAAAA

CS423 MP1 Walkthrough

Jiyuan Zhang

Sep 12

Before You Start

What You Need

Required Items
* Completed MPO.

* Able to read, write, and debug program codes written in C language.

Recommended Items

* Have a handy code editor.

* |If you need some recommendations: VSCode, Neovim, or GNU Emacs

* Use Linux Kernel Documentation to help you understand concepts.
* https://www.kernel.org/doc/html/v5.15/index.html

* Use Elixir Cross Referencer to help you go through codes.

® https://elixir.bootlin.com/linux/v5.15.127/source

Before You Start

Join the classroom:

Get Your Starter COde cs423-uiuc-classroom-2023Fall

To join the GitHub Classroom for this course, please select yourself

from the list below to associate your GitHub account with your

Accept the ASSignment on GitHUb ClaSSI'OOm First. school’s identifier (i.e., your name, ID, or email).

name? Skip to the next step —

* Go to this link: https://classroom.github.com/a/P4KJTn7f S

3a117@illincis.edu

* Login your GitHub account and find your Email. ;

agargya2@illinois.edu >

* Accept the assignment.

ajitps2@illinois.edu >

* The starter code will be available in the repo created. g i :

aman14@illinois.edu >
anal4@illinois.edu >
ananthm3@illinois.edu >
anderliu0216@gmail.com >
aravmc2@illinois.edu >

arjunbp3®@illinois.edu

arnavad@illinois.edu >

bnguyend@illinois.edu >

Introduction

About Kernel Programming

Lack of Isolation

® Unhandled exception in a user program: The program dead

® Unhandled exception in the kernel: The system dead

Preemption is not Always Available
* Infinite loop and dead locks are fatal

® Make sure you use loops and locks carefully

Lack of User Library

® You will deal with a new set of functions (e.g. kmalloc, printk, snprintf)

No Floating Points

® You will destroy user program’s calculation results

About MP1

The Task

A kernel module that measures the User Space CPU Time (User Time) of processes.

* |t allows multiple processes to register themselves and monitor their CPU usage concurrently

* A user program that does some work and then checks its User Time.

® |t communicates with your kernel module to register itself and read User Time info.

The kernel module and user program communicates via a Proc Filesystem Entry.

A README file to briefly introduce the tasks you have done.

About MP1

Component Overview

User App

Write self PID to /proc/mp1/status

\T%en

Do some calculations (10-15 seconds)

Register itself to Then

!

Read /proc/mp1/status and print to screen

Read results from

\ Kernel Module
Proc Filesystem Entry Timer Callback (Top-Half)
Triggers on Read Triggers on Write Schedule Work
Proc File Read Callback Proc File Write Callback Work Function (Bottom-Half)
Register Process Check and Report Run Time Update Run Time and Remove Dead Process

List of Registered Processes Module Initializer Module Finalizer

About MP1

The Kernel Module

* The kernel module should be your main focus. It contains three parts:

®* A Basic Runtime to track user program lists and do init/uninit jobs.
®* A Proc Filesystem Entry to hand read and write requests for user programs

¢ A Periodic Work to update User Time for programs.

Kernel Module

Proc File Periodic Work
Proc Filesystem Entry Timer Callback (Top-Half)
Triggers on Read Triggers on Write Schedule Work
Proc File Read Callback Proc File Write Callback Work Function (Bottom-Half)
Register Process Check and Report Run Time Update Run Time and Remove Dead Process

Basic Runtime

List of Registered Processes Module Initializer Module Finalizer

About MP1

The Kernel Module — Basic Runtime
* An initializer that allocates memory, lock, list, etc. when loading the module.

* An finalizer that deallocates the resources you allocated when unloading the module.

* A Linked List to store the User Times of registered processes.

Kernel Module

Proc File Periodic Work
Proc Filesystem Entry Timer Callback (Top-Half)
Triggers on Read Triggers on Write Schedule Work
Proc File Read Callback Proc File Write Callback Work Function (Bottom-Half)
Register Process Check and Report Run Time Update Run Time and Remove Dead Process

\ / Basic Runtime

List of Registered Processes Module Initializer Module Finalizer

About MP1

The Kernel Module — Basic Runtime

* The initializer will be automatically called when inserting your module into a Linux kernel.

® The entry point is provided in the starter code.

* The finalizer will be automatically called when unloading your module.

®* The entry point is provided in the starter code as well.

* To store the User Times of registered processes, you should use the Linked List.
® The length of list is unknown during compile time.
* |tems may be removed from the middle of the list. (You may want to remove dead processes from the list)
® You can check include/linux/list.h for Linux APls on Linked List operations.

®* You can check references of the APIs in Elixir Cross Referencer to see their real-world use cases for better understanding.

About MP1

The Kernel Module — Periodic Work

 Seta Timer in kernel to update the User Time of processes periodically (once per 5 seconds).
* The Timer will invoke a Callback when it is due.

* The Callback should use Workqueue to enqueue a Worker to do the real job.

* The Worker will be automatically called on a kernel thread when it is leaving the queue.

Kernel Module

Proc File Periodic Work
Proc Filesystem Entry Timer Callback (Top-Half)
Triggers on Read Triggers on Write Schedule Work
Proc File Read Callback Proc File Write Callback Work Function (Bottom-Half)
Register Process Check and Report Run Time Update Run Time and Remove Dead Process

Basic Runtime

List of Registered Processes Module Initializer Module Finalizer

About MP1

The Kernel Module — Periodic Work

* Why so complex?

The registered process list may be very long.
It may also needs to wait on locks.

It is better not blocking the Timers for too long as this may affect other Timers in the system.

* Where to look at:

Timer APl is defined in include/linux/timer.h

Workqueue APl is defined in include/linux/workqueue.h

A good use case is samples/ftrace/sample-trace-array.c#L24-1L44,L79-L80
Challenge: Linux Timer only fires once, how to make it fire multiple time in a fixed interval?

Answer: In the Timer Callback, modify the timer itself to fire again after another 5 seconds.

About MP1

The Kernel Module — Periodic Work

* What to do in the Timer Callback?

®* Reset the Timer so that it can fire again after another 5 seconds

® Enqueue a Worker onto the Workqueue

* What to do in the Workqueue Worker?

®* Lock the process list using Mutex to prevent race conditions with the Proc File handlers
® lterate through the registered process list

® Check if each process is still alive and their up-to-date User Timer

®* Update the process entry to record the newest User Time if the process is alive

®* Remove the process from the list if it is dead

About MP1

The Kernel Module — Proc Filesystem Entry

* Allow the user program to communicate with your module and get results. (File perm: 0666)
* Locates at /proc/mpl/status. Create the folder /proc/mpl first, then the file /proc/mpl1/status.
* Read: Report the User Time of all registered processes.

* Write: Register a new process using the PID of the process.

Kernel Module

Proc File Periodic Work
Proc Filesystem Entry Timer Callback (Top-Half)
Triggers on Read Triggers on Write Schedule Work
Proc File Read Callback Proc File Write Callback Work Function (Bottom-Half)
Register Process Check and Report Run Time Update Run Time and Remove Dead Process

Basic Runtime

List of Registered Processes Module Initializer Module Finalizer

About MP1

The Kernel Module — Proc Filesystem Entry

* The functions to create Proc Filesystem folders and files are in include/linux/proc_fs.h.

® See fs/lockd/procfs.c#L70-1L92 for a simple real-world use case on creating/destroying Proc Filesystem Entries

® See fs/jfs/jfs_debug.c#L20-L52 for a simple real-world use case on handling read/write for Proc Filesystem Entries

* You will need to deal with “user pointers”, i.e. pointers that are unsafe to deference in kernel space.
® Kernel marks this type of pointers in this format: void __ user *ptr

®* You need to copy them to/from kernel space to access them safely.

Use functions such as copy_from_user() or copy_to_user() before accessing them to eliminate security warnings.

* You will need to parse and format strings to/from integers

® Use functions such as snprintf() (printto a buffer) or kstrtoint() (parse string to int)

About MP1

The Kernel Module — Proc Filesystem Entry

* Example for Write

"1" > /proc/mpl/status # register PID 1

* Example for Read

read all registered PIDs and User Times
/proc/mpl/status

1: 82902

1728: 3317982

1743: 3421024

About MP1

The Kernel Module — Others

* Use Mutex lock to prevent race conditions between Proc File requests and periodic updates

® Defined in include/linux/mutex.h

e Use Slab allocator to allocate memories

® Definedin include/linux/slab.h

* Don’t worry on checking the liveness and User Time of processes

® A function will be given to you as a part of the starter code

About MP1

The User Program

* Getits own PID using getpid()
* Register itself to your kernel module via writing the PID to /proc/mpl/status
* Do 10-15 sec calculation (provided as a part of starter code)

* Read the User Time output from /proc/mpl/status, print to console, and exit

User App

Write self PID to /proc/mp1/status

Then

!

Do some calculations (10-15 seconds)

Then

Read /proc/mp1/status and print to screen

About MP1

Write a README file

* Edit the README.md in your GitHub starter code repo

* Briefly describe how you design and implement each parts of the kernel module

®* E.g. which system API used in what part, how parts interact with each other, anything special with your implementation
* If your code failed to run correctly on the test machine, this will help you get partial grade
* Don’t need to be very detailed

* No word limit

About MP1

Submission

* Push all your works into your GitHub repo (the repo containing your starter code)
e Grading will be based on your last commit pushed before the deadline

* TAs will compile and run your code on a MP0O VM to see if it works

* Deadline: Sep 26t at 11:59 PM CT

About MP1

Recap and Q&A

User App

Write self PID to /proc/mp1/status

\T%en

Do some calculations (10-15 seconds)

Register itself to Then

!

Read /proc/mp1/status and print to screen

Read results from

\ Kernel Module
Proc Filesystem Entry Timer Callback (Top-Half)
Triggers on Read Triggers on Write Schedule Work
Proc File Read Callback Proc File Write Callback Work Function (Bottom-Half)
Register Process Check and Report Run Time Update Run Time and Remove Dead Process

List of Registered Processes Module Initializer Module Finalizer

