
CS423 MP1 Walkthrough
Jiyuan Zhang

S e p 1 2

What You Need

Required Items

• Completed MP0.

• Able to read, write, and debug program codes written in C language.

Recommended Items

• Have a handy code editor.

• If you need some recommendations: VSCode, Neovim, or GNU Emacs

• Use Linux Kernel Documentation to help you understand concepts.

• https://www.kernel.org/doc/html/v5.15/index.html

• Use Elixir Cross Referencer to help you go through codes.

• https://elixir.bootlin.com/linux/v5.15.127/source

G R A I N G E R E N G I N E E R I N G

Before You Start

C O M P U T E R S C I E N C E

Get Your Starter Code

Accept the Assignment on GitHub Classroom First.

• Go to this link: https://classroom.github.com/a/P4KJTn7f

• Login your GitHub account and find your Email.

• Accept the assignment.

• The starter code will be available in the repo created.

G R A I N G E R E N G I N E E R I N G

Before You Start

C O M P U T E R S C I E N C E

About Kernel Programming

• Lack of Isolation

• Unhandled exception in a user program: The program dead

• Unhandled exception in the kernel: The system dead

• Preemption is not Always Available

• Infinite loop and dead locks are fatal

• Make sure you use loops and locks carefully

• Lack of User Library

• You will deal with a new set of functions (e.g. kmalloc, printk, snprintf)

• No Floating Points

• You will destroy user program’s calculation results

G R A I N G E R E N G I N E E R I N G

Introduction

C O M P U T E R S C I E N C E

The Task

• A kernel module that measures the User Space CPU Time (User Time) of processes.

• It allows multiple processes to register themselves and monitor their CPU usage concurrently

• A user program that does some work and then checks its User Time.

• It communicates with your kernel module to register itself and read User Time info.

• The kernel module and user program communicates via a Proc Filesystem Entry.

• A README file to briefly introduce the tasks you have done.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

Component Overview

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module

• The kernel module should be your main focus. It contains three parts:

• A Basic Runtime to track user program lists and do init/uninit jobs.

• A Proc Filesystem Entry to hand read and write requests for user programs

• A Periodic Work to update User Time for programs.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Basic Runtime

• An initializer that allocates memory, lock, list, etc. when loading the module.

• An finalizer that deallocates the resources you allocated when unloading the module.

• A Linked List to store the User Times of registered processes.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Basic Runtime

• The initializer will be automatically called when inserting your module into a Linux kernel.

• The entry point is provided in the starter code.

• The finalizer will be automatically called when unloading your module.

• The entry point is provided in the starter code as well.

• To store the User Times of registered processes, you should use the Linked List.

• The length of list is unknown during compile time.

• Items may be removed from the middle of the list. (You may want to remove dead processes from the list)

• You can check include/linux/list.h for Linux APIs on Linked List operations.

• You can check references of the APIs in Elixir Cross Referencer to see their real-world use cases for better understanding.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Periodic Work

• Set a Timer in kernel to update the User Time of processes periodically (once per 5 seconds).

• The Timer will invoke a Callback when it is due.

• The Callback should use Workqueue to enqueue a Worker to do the real job.

• The Worker will be automatically called on a kernel thread when it is leaving the queue.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Periodic Work

• Why so complex?

• The registered process list may be very long.

• It may also needs to wait on locks.

• It is better not blocking the Timers for too long as this may affect other Timers in the system.

• Where to look at:

• Timer API is defined in include/linux/timer.h

• Workqueue API is defined in include/linux/workqueue.h

• A good use case is samples/ftrace/sample-trace-array.c#L24-L44,L79-L80

• Challenge: Linux Timer only fires once, how to make it fire multiple time in a fixed interval?

• Answer: In the Timer Callback, modify the timer itself to fire again after another 5 seconds.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Periodic Work

• What to do in the Timer Callback?

• Reset the Timer so that it can fire again after another 5 seconds

• Enqueue a Worker onto the Workqueue

• What to do in the Workqueue Worker?

• Lock the process list using Mutex to prevent race conditions with the Proc File handlers

• Iterate through the registered process list

• Check if each process is still alive and their up-to-date User Timer

• Update the process entry to record the newest User Time if the process is alive

• Remove the process from the list if it is dead

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Proc Filesystem Entry

• Allow the user program to communicate with your module and get results. (File perm: 0666)

• Locates at /proc/mp1/status. Create the folder /proc/mp1 first, then the file /proc/mp1/status.

• Read: Report the User Time of all registered processes.

• Write: Register a new process using the PID of the process.

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Proc Filesystem Entry

• The functions to create Proc Filesystem folders and files are in include/linux/proc_fs.h.

• See fs/lockd/procfs.c#L70-L92 for a simple real-world use case on creating/destroying Proc Filesystem Entries

• See fs/jfs/jfs_debug.c#L20-L52 for a simple real-world use case on handling read/write for Proc Filesystem Entries

• You will need to deal with “user pointers”, i.e. pointers that are unsafe to deference in kernel space.

• Kernel marks this type of pointers in this format: void __user *ptr

• You need to copy them to/from kernel space to access them safely.

• Use functions such as copy_from_user() or copy_to_user() before accessing them to eliminate security warnings.

• You will need to parse and format strings to/from integers

• Use functions such as snprintf() (print to a buffer) or kstrtoint() (parse string to int)

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Proc Filesystem Entry

• Example for Write

• Example for Read

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The Kernel Module – Others

• Use Mutex lock to prevent race conditions between Proc File requests and periodic updates

• Defined in include/linux/mutex.h

• Use Slab allocator to allocate memories

• Defined in include/linux/slab.h

• Don’t worry on checking the liveness and User Time of processes

• A function will be given to you as a part of the starter code

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

The User Program

• Get its own PID using getpid()

• Register itself to your kernel module via writing the PID to /proc/mp1/status

• Do 10-15 sec calculation (provided as a part of starter code)

• Read the User Time output from /proc/mp1/status, print to console, and exit

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

Write a README file

• Edit the README.md in your GitHub starter code repo

• Briefly describe how you design and implement each parts of the kernel module

• E.g. which system API used in what part, how parts interact with each other, anything special with your implementation

• If your code failed to run correctly on the test machine, this will help you get partial grade

• Don’t need to be very detailed

• No word limit

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

Submission

• Push all your works into your GitHub repo (the repo containing your starter code)

• Grading will be based on your last commit pushed before the deadline

• TAs will compile and run your code on a MP0 VM to see if it works

• Deadline: Sep 26th at 11:59 PM CT

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

Recap and Q&A

G R A I N G E R E N G I N E E R I N G

About MP1

C O M P U T E R S C I E N C E

