
CS423: Operating Systems Design

CS 423
Operating System Design:

Concurrency

Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

Concurrency vs Parallelism
Two tasks
1. Get a visa
2. Prepare slides

1. Sequential execution

2. Concurrent execution

3. Parallel execution

4. Concurrent but not parallel

5. Parallel but not concurrent

6. Parallel and concurrent

CS423: Operating Systems Design

Why Concurrency?

3

CS423: Operating Systems Design

Definitions
• Thread: A single execution sequence that represents a

separately schedulable task.

• Single execution sequence: intuitive and familiar
programming model

• separately schedulable: OS can run or suspend a
thread at any time.

• Schedulers operate over threads/tasks, both kernel
and user threads.

• Does the OS protect all threads from one another?

4

CS423: Operating Systems Design

The Thread Abstraction
• Infinite number of processors

• Threads execute with variable speed

5

CS423: Operating Systems Design

Programmer vs. Processor View

6

Variable Speed: Program must anticipate all of these possible executions

Programmer View

CS423: Operating Systems Design

Possible Executions

7

Something to look forward to when we discuss scheduling!

Processor View

CS423: Operating Systems Design

Thread Ops

8

• thread_create(thread, func, args)
Create a new thread to run func(args)

• thread_yield()
Relinquish processor voluntarily

• thread_join(thread)
In parent, wait for forked thread to exit, then return

• thread_exit
Quit thread and clean up, wake up joiner if any

CS423: Operating Systems Design

Ex: threadHello

9

#define NTHREADS 10
thread_t threads[NTHREADS];
main() {

for (i = 0; i < NTHREADS; i++) thread_create(&threads[i], &go, i);
for (i = 0; i < NTHREADS; i++) {

exitValue = thread_join(threads[i]);
printf("Thread %d returned with %ld\n", i, exitValue);

}
printf("Main thread done.\n");

}
void go (int n) {

printf("Hello from thread %d\n", n);
thread_exit(100 + n);
// REACHED?

}

CS423: Operating Systems Design

Ex: threadHello output

10

• Must “thread returned” print
in order?

• What is maximum # of
threads that exist when
thread 5 prints hello?

• Minimum?

• Why aren’t any messages
interrupted mid-string?

CS423: Operating Systems Design

Create/Join Concurrency

11

• Threads can create children, and wait for their
completion

• Data only shared before fork/after join
• Examples:
• Web server: fork a new thread for every new

connection
• As long as the threads are completely
independent

• Merge sort
• Parallel memory copy

CS423: Operating Systems Design

Ex: bzero

12

void blockzero (unsigned char *p, int length) {
int i, j;
thread_t threads[NTHREADS];
struct bzeroparams params[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.
for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {

params[i].buffer = p + i * length/NTHREADS;
params[i].length = length/NTHREADS;
thread_create_p(&(threads[i]), &go, ¶ms[i]);

}
for (i = 0; i < NTHREADS; i++) {

thread_join(threads[i]);
}

}

CS423: Operating Systems Design

Thread Data Structures

13

CS423: Operating Systems Design

Thread Lifecycle

14

CS423: Operating Systems Design

Thread Implementations
• Kernel threads

• Thread abstraction only available to kernel

• To the kernel, a kernel thread and a single
threaded user process look quite similar

• Multithreaded processes using kernel threads

• Kernel thread operations available via syscall

• User-level threads

• Thread operations without system calls

15

CS423: Operating Systems Design

Multithreaded OS Kernel

16

CS423: Operating Systems Design

Implementing Threads
• Thread_fork(func, args)
• Allocate thread control block
• Allocate stack
• Build stack frame for base of stack (stub)
• Put func, args on stack
• Put thread on ready list
• Will run sometime later (maybe right away!)

• stub(func, args):
• Call (*func)(args)
• If return, call thread_exit()

17

CS423: Operating Systems Design

Implementing Threads
• Thread_Exit
• Remove thread from the ready list so that it will

never run again
• Free the per-thread state allocated for the thread

18

CS423: Operating Systems Design

Ex: Two Threads call Yield

21

CS423: Operating Systems Design

Multi-threaded User Processes

24

Take 1:
• User thread = kernel thread (Linux, MacOS)
• System calls for thread fork, join, exit (and lock,

unlock,…)
• Kernel does context switch
• Simple, but a lot of transitions between user and

kernel mode

CS423: Operating Systems Design 25

Take 1:

Multi-threaded User Processes

CS423: Operating Systems Design

Multi-threaded User Processes

26

Take 2:
• Green threads (early Java)
• User-level library, within a single-threaded process
• Library does thread context switch
• Preemption via upcall/UNIX signal on timer interrupt
• Use multiple processes for parallelism
• Shared memory region mapped into each process

CS423: Operating Systems Design

Multi-threaded User Processes

27

Take 3:
• Scheduler activations (Windows 8):
• Kernel allocates processors to user-level library
• Thread library implements context switch
• Thread library decides what thread to run next

• Upcall whenever kernel needs a user-level scheduling
decision:
• Process assigned a new processor
• Processor removed from process
• System call blocks in kernel

CS 423: Operating Systems Design

28

M:N model multiplexes N user-level threads onto M kernel-level threads

Good idea? Bad Idea?

Take 3: (What’s old is new again)

Multi-threaded User Processes

