CS 423
Operating System Design:
Concurrency

Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

Concurrency vs Parallelism

Two tasks
|. Get a visa

2. Prepare slides

|. Sequential execution

2. Concurrent execution

3. Parallel execution

4. Concurrent but not parallel
5. Parallel but not concurrent

6. Parallel and concurrent

CS423: Operating Systems Design

Why Concurrency!

* Servers
— Multiple connections handled simultaneously

e Parallel programs
— To achieve better performance

* Programs with user interfaces

— To achieve user responsiveness while doing
computation

 Network and disk bound programs
— To hide network/disk latency

CS423: Operating Systems Design

Definrtions [(

« Thread: A single execution sequence that represents a
separately schedulable task.

» Single execution sequence: intuitive and familiar
programming mode]

* separately schedulable: OS can run or suspend a
thread at any time.

« Schedulers operate over threads/tasks, both kernel
and user threads.

* Does the OS protect all threads from one another?

CS423: Operating Systems Design

The Thread Abstraction

* Infinite number of processors

» Threads execute with variable speed

Programmer Abstraction Physical Reality

Processors§1§2§3§4§5§ 12

M o o . s . ° a M
........... : %ecccccsee | ®ecccccee e cecccccel

Running Ready
Threads Threads

CS423: Operating Systems Design 5

Programmer vs. Processor View][

Programmer View

Programmer’s Possible Possible Possible
View Execution Execution Execution
#1 #2 #3
X =X+ 1; X =X+ 1; X =X + 1; X =X+ 1;
y =y + X; y =y + X, ... y =y + X;
zZ = X + 9y, Z = X + 39y, Thread is suspended. «+.cvvivvnnnnn
Other thread(s) run. Thread is suspended.
Thread is resumed. Other thread(s) run.
............... Thread is resumed.
Y =¥V + X, e
z = X + by; z = x + 5y,

Variable Speed: Program must anticipate all of these possible executions

CS423: Operating Systems Design 0

Possible Executions

Processor View

One Execution Another Execution
Thread 1 Thread 1
Thread 2 Thread 2
Thread 3 Thread 3

Another Execution

Thread 1

Thread 2

Thread 3

Something to look forward to when we discuss scheduling!

CS423: Operating Systems Design /

Thread Ops

 thread_create(thread, func, args)
Create a new thread to run func(args)

 thread_yield()
Relinquish processor voluntarily

 thread_join(thread)
In parent, wait for forked thread to exit, then return

 thread_exit
Quit thread and clean up, wake up joiner if any

CS423: Operating Systems Design

Ex: threadHello

#define NTHREADS 10
thread t threads[NTHREADS];
main() {
for (i = 0; 1 NTHREADS; i++) thread create(&threads[i], &go, 1);
for (i = 0; i < NTHREADS; i++) {
exitValue = thread join(threads[i]);
printf("Thread %d returned with %1d\n", i, exitValue);

<
<

}

printf("Main thread done.\n");

}

void go (int n) {
printf("Hello from thread %d\n", n);
thread exit (100 + n);
// REACHED?

CS423: Operating Systems Design 9

Ex: threadHello output |

e fiagresig b e . Must “thread returned” print
Hello from thread 1 |n OI‘C|€I‘7

Thread 0 returned 100
Hello from thread 3
Hello from thread 4

L S—. » What is maximum # of
Hello from thread threads that exist when
thread 5 prints hello?

Hello from thread
Hello from thread
Hello from thread
Hello from thread 9
Thread 2 returned 102 .
Thread 3 returned 103 « MinNimMum?
Thread 4 returned 104
Thread 5 returned 105

6

7

8

Thread 7 returned 107 - Why aren’t any messages
o Am—— interrupted mid-string?

SN oo

Thread
Thread 9 returned 109
Main thread done.

CS423: Operating Systems Design

Create/Join Concurrency

« Threads can create children, and wait for their
completion
« Data only shared before fork/after join
« Examples:
« Web server: fork a new thread for every new
connection
« As long as the threads are completely
independent
« Merge sort
« Parallel memory copy

CS423: Operating Systems Design

Ex: bzero

void blockzero (unsigned char *p, int length) {
int i, Jj;
thread t threads[NTHREADS];
struct bzeroparams params|[NTHREADS];

// For simplicity, assumes length is divisible by NTHREADS.
for (i = 0, j = 0; i < NTHREADS; i++, j += length/NTHREADS) {
params[i].buffer = p + i * length/NTHREADS;
params[i].length = length/NTHREADS;
thread create p(&(threads[i]), &go, ¶ms[i]);

}

for (i = 0; i < NTHREADS; i++) ({
thread join(threads[i]);

}

CS423: Operating Systems Design

Thread Data Structures

Shared
State

Code

Thread 1’s
Per-Thread State

Global
Variables

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Thread 2’s
Per-Thread State

Thread Control
Block (TCB)

Stack
Information

Saved
Registers

Thread
Metadata

Heap

CS423: Operating Systems Design

Scheduler
Resumes Thread

Thread Creation Ready |77 > Thread Exit
.................................... > ea y seccsssssccssssscccsssssccssssscccss)
sthread create()\ = =~ J¢rmmmmmmmmmmmmm sthread _exit()

Thread Yield/Scheduler
A Suspends Thread
5 sthread_yield()
Event Occurs Thread Waits for Event
OtherThread Calls *, / sthread_join()

sthread _join()

CS423: Operating Systems Design

[hread Implementations

« Kernel threads
» Thread abstraction only available to kernel

* To the kernel, a kernel thread and a single
threaded user process look quite similar

« Multithreaded processes using kernel threads
« Kernel thread operations available via syscall
« User-level threads

« Thread operations without system calls

CS423: Operating Systems Design

Kernel

Multithreaded OS Kernel

Code

Globals

Heap

Kernel Thread 1

§

Kernel Thread 2 Kernel Thread 3

o

TCB 2

o

Stack

TCB 3

Process 1

Stack

PCB 1

Process 2

Stack

PCB 2

Stack

CS423: Operating Systems Design

User-Level Processes

Code

Code

Globals

Globals

Heap

Heap

Implementing [hreads

« Thread_fork(func, args)
« Allocate thread control block
« Allocate stack
 Build stack frame for base of stack (stub)
« Put func, args on stack
« Put thread on ready list
« Will run sometime later (maybe right away!)

 stub(func, args):
 Call (*func)(args)
 If return, call thread_exit()

CS423: Operating Systems Design

Implementing [hreads

« Thread_ Exit
« Remove thread from the ready list so that it will
never run again
« Free the per-thread state allocated for the thread

CS423: Operating Systems Design

Ex: Two [hreads call Yiela

Thread 1’s instructions Thread 2’s instructions
“return” from thread_switch
into stub
call go
call thread_yield
choose another thread
call thread_switch

save thread 1 state to TCB

load thread 2 state
“return” from thread switch
into stub
call go

call thread_yield
choose another thread
call thread switch
save thread 2 state to TCB
load thread 1 state

return from thread switch

return from thread_yield

call thread_yield

choose another thread

call thread_switch

CS423: Operating Systems Design

Processor’s instructions

“return” from thread_switch
into stub

call go

call thread_yield

choose another thread

call thread_switch

save thread 1 state to TCB

load thread 2 state

“return” from thread switch
into stub

call go

call thread_yield

choose another thread

call thread switch

save thread 2 state to TCB

load thread 1 state

return from thread_switch

return from thread_yield

call thread_yield

choose another thread

call thread_switch

Multi-threaded User Processes][

Take 1:
« User thread = kernel thread (Linux, MacOS)
« System calls for thread fork, join, exit (and lock,
unlock,...)
« Kernel does context switch
« Simple, but a lot of transitions between user and
kernel mode

CS423: Operating Systems Design

Take 1:

Multi-threaded User Processes

Kernel

CS423: Operating Systems Design

Code Kernel Thread 1 Kernel Thread 2 Kernel Thread 3 Process 1 Process 2
S 5 S PCB 1 PCB 2
Globals TCB 1 TCB 2 TCB 3 TCB1.A| | TCB1.B TCB2.A| | TCB2.B
Stack Stack Stack Stack Stack Stack Stack
Heap PSSR PSRRI PRSP
Process 1 Process 2
User-Level Processes Thread A Thread B Thread A Thread B
Stack ‘ ‘ Stack Stack | ‘ Stack
Code Code
Globals Globals
Heap Heap

Multi-threaded User Processes][

Take 2:
« Green threads (early Java)
« User-level library, within a single-threaded process
« Library does thread context switch
« Preemption via upcall/UNIX signal on timer interrupt
« Use multiple processes for parallelism
« Shared memory region mapped into each process

CS423: Operating Systems Design

Multi-threaded User Processes][

Take 3:
« Scheduler activations (Windows 8):
« Kernel allocates processors to user-level library
« Thread library implements context switch
« Thread library decides what thread to run next
« Upcall whenever kernel needs a user-level scheduling
decision:
« Process assigned a new processor
« Processor removed from process
« System call blocks in kernel

CS423: Operating Systems Design

Multi-threaded User Processes

Take 3: (What's old is new again)

Multiple user threads
on a kernel thread

\

!

Kernel

)

S*— Kernel thread

> User
space

~,

Kernel
space

M:N model multiplexes N user-level threads onto M kernel-level threads
Good idea? Bad ldea”

CS 423: Operating Systems Design

