
CS 423: Operating Systems Design

Tianyin Xu

CS 423
Operating System Design:
Systems Programming Review

* Thanks for Prof. Adam Bates for the slides.

CS 423: Operating Systems Design

System Calls

2

Function Calls

Caller and callee are in the same
Process

- Same user
- Same “domain of trust”

System Calls

?

CS 423: Operating Systems Design

Review: System Calls

3

Function Calls

Caller and callee are in the same
Process

- Same user
- Same “domain of trust”

System Calls

- OS is trusted; user is not.
- OS has super-privileges; user does not
- Must take measures to prevent abuse

CS 423: Operating Systems Design

Example System Calls?

4

CS 423: Operating Systems Design

Example System Calls?

5

Example:
getuid() //get the user ID
fork() //create a child process
exec() //executing a program

Don’t confuse system calls with stdlib calls
Differences?
Is printf() a system call?
Is rand() a system call?

CS 423: Operating Systems Design

Example System Calls?

6

Example:
getuid() //get the user ID
fork() //create a child process
exec() //executing a program

Don’t confuse system calls with stdlib calls
Differences?
Is printf() a system call?
Is rand() a system call?

CS 423: Operating Systems Design

Syscalls vs. I/O Lib Calls

7

Each system call has analogous procedure calls from the standard
I/O library:

System Call Standard I/O call

open fopen
close fclose
read/write getchar/putchar

getc/putc
fgetc/fputc
fread/fwrite
gets/puts
fgets/fputs
scanf/printf
fscanf/fprintf

lseek fseek

CS 423: Operating Systems Design

Processes

8

■ Possible process states
■ Running (occupy CPU)
■ Blocked
■ Ready (does not occupy CPU)
■ Other states: suspended, terminated

Question: in a single processor machine, how many process can be in running state?

CS 423: Operating Systems Design

Processes

9

■ Possible process states
■ Running (occupy CPU)
■ Blocked
■ Ready (does not occupy CPU)
■ Other states: suspended, terminated

Question: in a single processor machine, how many process can be in running state?

CS 423: Operating Systems Design

Creating a Process

10

• What UNIX call creates a process?

CS 423: Operating Systems Design

Creating a Process - fork()

11

• What UNIX call creates a process?
• fork() duplicates a process so that instead of one

process you get two.
■ The new process and the old process both continue in
parallel from the statement that follows the fork()

CS 423: Operating Systems Design 12

• What UNIX call creates a process?
• fork() duplicates a process so that instead of one

process you get two.
■ The new process and the old process both continue in
parallel from the statement that follows the fork()

• How can you tell the two processes apart?

Creating a Process - fork()

CS 423: Operating Systems Design 13

• What UNIX call creates a process?
• fork() duplicates a process so that instead of one

process you get two.
■ The new process and the old process both continue in
parallel from the statement that follows the fork()

• How can you tell the two processes apart?
• fork() returns

■ 0 to child
■ -1 if fork fails
■ Child’s PID to parent process

Creating a Process - fork()

CS 423: Operating Systems Design 14

• What UNIX call creates a process?
• fork() duplicates a process so that instead of one

process you get two.
■ The new process and the old process both continue in
parallel from the statement that follows the fork()

• How can you tell the two processes apart?
• fork() returns

■ 0 to child
■ -1 if fork fails
■ Child’s PID to parent process

■ If the parent code changes a global variable, will the
child see the change?

Creating a Process - fork()

CS 423: Operating Systems Design 15

• What UNIX call creates a process?
• fork() duplicates a process so that instead of one

process you get two.
■ The new process and the old process both continue in
parallel from the statement that follows the fork()

• How can you tell the two processes apart?
• fork() returns

■ 0 to child
■ -1 if fork fails
■ Child’s PID to parent process

■ If the parent code changes a global variable, will the
child see the change?
■ Nope! On fork, child gets new program counter, stack, file

descriptors, heap, globals, pid!

Creating a Process - fork()

CS 423: Operating Systems Design

Creating a Process

16

• What if we need the child process to execute different
code than the parent process?

CS 423: Operating Systems Design 17

• What if we need the child process to execute different
code than the parent process?
■ Exec function allows child process to execute code that

is different from that of parent
■ Exec family of functions provides a facility for

overlaying the process image of the calling process
with a new image.

■ Exec functions return -1 and sets errno if unsuccessful

Creating a Process - exec()

CS 423: Operating Systems Design 18

• What is the difference between a thread and a process?

Threads vs. Processes

CS 423: Operating Systems Design 19

• What is the difference between a thread and a process?
■ Both provided independent execution sequences, but…
■ Each process has its own memory space
■ Remember how child processes can’t see changes to

parent’s global variable??
■ Threads run in a shared memory space

Threads vs. Processes

CS 423: Operating Systems Design 20

• What is POSIX?
• How do you create a POSIX thread?

Threads vs. Processes

CS 423: Operating Systems Design 21

• What is POSIX?
• How do you create a POSIX thread?

Threads vs. Processes

POSIX function description
!"#$%&'()$%&"% create a thread
!"#$%&'('%"&)# set thread to release resources
!"#$%&'(%*+&, test two thread IDs for equality
!"#$%&'(%-." exit a thread without exiting process
!"#$%&'(/.,, send a signal to a thread
!"#$%&'(01.2 wait for a thread
!"#$%&'(3%,4 find out own thread ID

CS 423: Operating Systems Design

Threads: Lightweight Proc’s

22

Environment (resource) execution

■ (a) Three processes each with one thread
■ (b) One process with three threads

Environment (resource) execution

22

CS 423: Operating Systems Design

Threads: Kernel v. User

23

■ What is the difference between kernel
and user threads? Pros and Cons?

CS 423: Operating Systems Design

Threads: Kernel v. User

24

■ What is the difference between kernel
and user threads? Pros and Cons?

■ Kernel thread packages
■ Each thread can make blocking I/O calls
■ Can run concurrently on multiple processors

■ Threads in User-level
■ Fast context switch
■ Customized scheduling

CS 423: Operating Systems Design

Hybrid Threads (Solaris)

25

M:N model multiplexes N user-level threads onto M kernel-level threads

Good idea? Bad Idea?

CS 423: Operating Systems Design

Synchronization

26

■ Processes and threads can be preempted at
arbitrary times, which may generate problems.

■ Example: What is the execution outcome of the
following two threads (initially x=0)?
Thread 1:

Read X
Add 1
Write X

Thread 2:

Read X
Add 1
Write X

How do we account for this?

CS 423: Operating Systems Design

Critical Regions/Sections

27

Process {
while (true) {

ENTER CRITICAL SECTION
Access shared variables;
LEAVE CRITICAL SECTION
Do other work

}
}

CS 423: Operating Systems Design

Mutex

28

■ Simplest and most efficient thread synchronization
mechanism

■ A special variable that can be either in
■ locked state: a distinguished thread that holds or owns the

mutex; or
■ unlocked state: no thread holds the mutex

■ When several threads compete for a mutex, the losers block
at that call
■ The mutex also has a queue of threads that are waiting to

hold the mutex.
■ POSIX does not require that this queue be accessed FIFO.
■ Helpful note — Mutex is short for “Mutual Exclusion”

CS 423: Operating Systems Design

POSIX Mutex Functions

29

■ int pthread_mutex_init(pthread_mutex_t *restrict mutex,
const pthread_mutexattr_t *restrict attr);
■ Also see PTHREAD_MUTEX_INITIALIZER

■ int pthread_mutex_destroy(pthread_mutex_t *mutex);
■ int pthread_mutex_lock(pthread_mutex_t *mutex);
■ int pthread_mutex_trylock(pthread_mutex_t *mutex);
■ int pthread_mutex_unlock(pthread_mutex_t *mutex);

CS 423: Operating Systems Design

Pseudocode for a blocking implementation of semaphores:

Semaphores

30

void wait (semaphore_t *sp)
if (sp->value >0) sp->value--;
else {
<Add this process to sp->list>
<block>

}

void signal (semaphore_t *sp)
if (sp->list != NULL)

<remove a process from sp->list,
put it in ready state>

else sp->value++;

CS 423: Operating Systems Design

Scheduling

31

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin
■ Priority Scheduling

CS 423: Operating Systems Design

Scheduling

32

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin
■ Priority Scheduling

■ What is an optimal algorithm in the sense
of maximizing the number of jobs finished?

CS 423: Operating Systems Design

Scheduling

33

■ Basic scheduling algorithms
■ FIFO (FCFS)
■ Shortest job first
■ Round Robin
■ Priority Scheduling

■ What is an optimal algorithm in the sense
of meeting the most deadlines (of real time
tasks)?

CS 423: Operating Systems Design 34

■ Non-preemptive scheduling:
■ The running process keeps the CPU until it

voluntarily gives up the CPU
■ process exits
■ switches to blocked state
■ 1 and 4 only (no 3)

■ Preemptive scheduling:
■ The running process can be interrupted and

must release the CPU (can be forced to give
up CPU)

Running Terminated

Ready Blocked

1

4

3

Scheduling

CS 423: Operating Systems Design

Signals

35

• What is a signal in UNIX/Linux?

CS 423: Operating Systems Design

Signals

36

• What is a signal in UNIX/Linux?
■ A way for one process to send a notification to another
■ A signal can be “caught”, “ignored”, or “blocked”

CS 423: Operating Systems Design

Signals

37

• What is a signal in UNIX/Linux?
■ A way for one process to send a notification to another
■ A signal can be “caught”, “ignored”, or “blocked”

■ Signal is generated when the event that causes it occurs.
■ Signal is delivered when a process receives it.
■ The lifetime of a signal is the interval between its generation

and delivery.
■ Signal that is generated but not delivered is pending.
■ Process catches signal if it executes a signal handler when the

signal is delivered.
■ Alternatively, a process can ignore a signal when it is

delivered, that is to take no action.
■ Process can temporarily prevent signal from being delivered by

blocking it.
■ Signal Mask contains the set of signals currently blocked.

CS 423: Operating Systems Design

POSIX-required Signals*

38

Signal Description default action

SIGABRT process abort implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory object implementation dependent

SIGCHLD child terminated, stopped or continued ignore

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually ctrl-
C)

abnormal termination

SIGKILL terminated (cannot be caught or
ignored)

abnormal termination

* Not an exhaustive list

CS 423: Operating Systems Design

POSIX-required Signals*

39

Signal Description default action

SIGSEGV Invalid memory reference implementation
dependent

SIGSTOP Execution stopped stop

SIGTERM termination Abnormal termination

SIGTSTP Terminal stop stop

SIGTTIN Background process attempting read stop

SIGTTOU Background process attempting write stop

SIGURG High bandwidth data available on
socket

ignore

SIGUSR1 User-defined signal 1 abnormal termination

* Not an exhaustive list

CS 423: Operating Systems Design

User- generated Signals

40

■ How can you send a signal to a process from the
command line?

CS 423: Operating Systems Design

User- generated Signals

41

■ How can you send a signal to a process from the
command line?

■ kill

CS 423: Operating Systems Design

User- generated Signals

42

■ How can you send a signal to a process from the
command line?

■ kill
■ kill -l will list the signals the system understands
■ kill [-signal] pid will send a signal to a process.
■ The optional argument may be a name or a number

(default is SIGTERM).
■ To unconditionally kill a process, use:

■ kill -9 pid which is
kill -SIGKILL pid.

CS 423: Operating Systems Design

Signal Masks

43

■ A process can temporarily prevent a signal from being delivered
by blocking it.

■ Signal Mask contains a set of signals currently blocked.
■ Important! Blocking a signal is different from ignoring signal.

Why?

CS 423: Operating Systems Design

Signal Masks

44

■ A process can temporarily prevent a signal from being delivered
by blocking it.

■ Signal Mask contains a set of signals currently blocked.
■ Important! Blocking a signal is different from ignoring signal.

Why?
■ When a process blocks a signal, the OS does not deliver signal

until the process unblocks the signal
■ A blocked signal is not delivered to a process until it is unblocked.

■ When a process ignores signal, signal is delivered and the
process handles it by throwing it away.

CS 423: Operating Systems Design

Deadlocks

45

CS 423: Operating Systems Design

Deadlocks

46

When do deadlocks occur (hint: 4 preconditions)?

CS 423: Operating Systems Design

Deadlocks

47

• Mutual exclusion
• Hold and wait condition
• No preemption condition
• Circular wait condition

When do deadlocks occur (hint: 4 preconditions)?

CS 423: Operating Systems Design

Resource Allocation Graphs

Deadlocks

48

• resource R assigned to process A
• process B is requesting/waiting for resource S
• process C and D are in deadlock over resources T and U

assign request

CS 423: Operating Systems Design

■ shouting
■ detection and recovery
■ dynamic avoidance (at run-time)
■ prevention (by offline design)

● by negating one of the four necessary conditions

Strategies for Dealing with Deadlocks

Deadlocks

49

