
CS 423: Operating Systems Design

CS 423

Operating System Design:

MP3 Walkthrough

C S 423: O perating S ystems Des ign 3CS423: Operating Systems Design

• Understand the Linux virtual to physical page mapping

and page fault rate.

• Design a lightweight tool that can profile page fault rate.

• Implement the profiler tool as a Linux kernel module.

• Learn how to use the kernel-level APIs for character

devices, vmalloc(), and mmap().

Purpose of MP3

CS 423: Operating Systems Design 4CS423: Operating Systems Design

• Performance gap between memory and disk

– Registers: ~1ns

– DRAM: 50-150ns

– Disk: ~10ms, hundreds times slower than memory!

• Performance of the virtual memory system plays a major

role in the overall performance of the Operating System

• Inefficient VM replacement of pages

– Bad performance for user-level programs

– Increasing the response time

– Lowering the throughput

Introduction

CS 423: Operating Systems Design 5CS423: Operating Systems Design

• Page Fault is a trap to the software raised by the

hardware when:

– A program accesses a page that is mapped in the Virtual

address space but not loaded in the Physical memory

• In general, OS tries to handle the page fault by bringing

the required page into physical memory.

• The hardware that detects a Page Fault is the Memory

Management Unit of the processor

• However, if there is an exception (e.g. illegal access like

accessing null pointer) that needs to be handled, OS

takes care of that

Page Fault

CS 423: Operating Systems Design 6CS423: Operating Systems Design

• Major page fault

– Handled by using a disk I/O operation

– Memory mapped file

– Page replacement / Cold Pages

– Expensive as they add to disk latency

• Minor page fault

– Handled without using a disk I/O operation

– malloc(), copy_on_write(), fork()

Page Fault

CS 423: Operating Systems Design 7CS423: Operating Systems Design

• Major Page Fault are much more expensive. How much?

– HDD average rotational latency : 3ms

– HDD average seek time: 5ms

– Transfer time from HDD: 0.05ms/page

• Total time for bringing in a page = 8ms= 8,000,000ns

– Memory access time: 200ns

– Thus, Major Page Fault is 40,000 times slower

Effect of Page Fault on System
Performance

CS 423: Operating Systems Design 8CS423: Operating Systems Design

Linux Kernel
MP3 Profiler

Kernel Module

Work
Process 1
(100MB)

Monitor
Process

Work
Process 2

(10MB)

Work
Process 3

(1GB)

Disk
Post-Mortem

Analysis

MP3 Overview

C S 423: O perating S ystems Des ign 9CS423: Operating Systems Design

Metric

CS 423: Operating Systems Design 10CS423: Operating Systems Design

Thrashing

CS 423: Operating Systems Design 11CS423: Operating Systems Design

• Accuracy of Measurement

– Many profiling operations are needed in a short time interval.

• Copy to user space causes a significant performance

overhead

• Solution: Use Shared Memory

Measurement

CS 423: Operating Systems Design 12CS423: Operating Systems Design

Profiler

Buffer

3GB

4GB

0GB

3GB

4GB

0GB

Virtual Addr. Virtual Addr.

Physical Addr.

vmalloc()

“PG_reserved”

Profiler

Buffer

Profiler

Buffer

mmap()

Memory Map

C S 423: O perating S ystems Des ign 13CS423: Operating Systems Design

• A character device driver is used as a control interface of

the shared memory

– Map Shared Memory (i.e., mmap()): To map the profiler buffer

memory allocated in the kernel address space to the virtual

address space of a requesting user-level process

• Shared memory

– Normal memory access: Used to deliver profiled data from the

kernel to user processes

Char Device and Shared Memory

CS 423: Operating Systems Design 14CS423: Operating Systems Design

• Three types interfaces between the OS kernel module

and user processes:

– a Proc file

– a character device driver

– a shared memory area

Interface of Kernel Module

CS 423: Operating Systems Design 15CS423: Operating Systems Design

• Proc filesystem entry (/proc/mp3/status)

– Register: Application to notify its intent to monitor its page fault

rate and utilization.

• ‘R <PID>’

– Deregister: Application to notify that the application has finished

using the profiler.

• ‘U <PID>’

– Read Registered Task List: To query which applications are

registered.

• Return a list with the PID of each application

Proc File System

CS 423: Operating Systems Design 16CS423: Operating Systems Design

Kernel Space

Proc FS
Write Op.

B3

A1

Linked List
for Reg. Tasks

Control a
Work Queue

mmap()

Process
Control Block

Work
Process

A5

B1

Monitor
Process

Monitor
Work Queue

Char. Device
Driver

Interface

B4. Close

A1. Register

A5. Unregister B1. Open

Profiler
buffer

A2

A3

A4

B2

B4

A2. Allocate Memory Block A3. Memory Accesses A4. Free Memory Blocks

B2. mmap() B3. Read Profiled Data

Module
Init/Exit

Allocate
or free

MP3 Design

C S 423: O perating S ystems Des ign 17CS423: Operating Systems Design

• Work program (given for case studies)

– A single threaded user-level application with three parameters:

memory size, locality pattern, and memory access count per

iteration

• Allocates a request size of virtual memory space (e.g., up to 1GB)

• Accesses them with a certain locality pattern (i.e., random or

temporal locality) for a requested number of times

• The access step is repeated for 20 times.

– Multiple instances of this program can be created (i.e., forked)

simultaneously.

Workload

CS 423: Operating Systems Design 18CS423: Operating Systems Design

• Monitor application is also given

– Requests the kernel module to map the kernel-level profiler

buffer to its user-level virtual address space (i.e., using mmap()).

• This request is sent by using the character device driver created by

the kernel module.

– The application reads profiling values (i.e., major and minor page

fault counts and utilization of all registered processes).

– By using a pipe, the profiled data is stored in a regular file.

• So that these data are plotted and analyzed later.

Monitoring Program

CS 423: Operating Systems Design 19CS423: Operating Systems Design

• It is common in kernel code to defer part of the work

• E.g. Interrupt handler code

– Some or all interrupts are disabled when handling it

– While handling one, we might lose new interrupts

– So, make the handling as fast as possible

– Top half

– Bottom half

• Better performance because :

– quick response to interrupts

– by deferring non-time-sensitive part of the work to later

Deferring Work

CS 423: Operating Systems Design 20CS423: Operating Systems Design

• Bottom-half mechanism used to defer work

• Work queues run in process context.

– Work queues can sleep, invoke the scheduler, and so on.

– The kernel schedules bottom halves running in work queues.

• The work queue execute user’s bottom half as a specific

function, called a work queue handler or simply a work

function.

• Linux provides a common work queue but you can also

initialize your own

Work Queue

CS 423: Operating Systems Design 21CS423: Operating Systems Design

• In order to create a work queue, you need to:

– Call the create_workqueue() function

– Which returns a workqueue_struct reference

– struct workqueue_struct *create_workqueue(name);

• It can later be destroyed by calling the

destroy_workqueue() function

– void destroy_workqueue(struct workqueue_struct *);

Creating/Destroying a Work Queue

CS 423: Operating Systems Design 22CS423: Operating Systems Design

• The work to be added to the queue is

– Defined by struct work_Struct

– Initialized by calling the INIT_WORK() function

– INIT_WORK(struct work_struct *work, func);

• Now that the work is initialized, it can be added to the

work queue by calling one of the following:

– int queue_work(struct workqueue_struct *wq, struct work_struct

*work);

– int queue_delayed_work(struct workqueue_struct *wq, struct

work_struct *work, unsigned long delay);

Creating/Destroying a Work Queue

CS 423: Operating Systems Design 23CS423: Operating Systems Design

• Flush_work(): to flush a particular work and block until

the work is complete

– int flush_work(struct work_struct *work);

• Flush_workqueue(): similar to flush_work() but for the

whole work queue

– int flush_workqueue(struct workqueue_struct *wq);

Creating/Destroying a Work Queue

CS 423: Operating Systems Design 24CS423: Operating Systems Design

• Cancel_work(): to cancel a work that is not already

executing in a handler

– The function will terminate the work in the queue

– Or block until the callback is finished (if the work is already in

progress in the handler)

– int cancel_work_sync(struct work_struct *work);

• Work_Pending(): to find out whether a work item is

pending or not

– work_pending(work);

Creating/Destroying a Work Queue

CS 423: Operating Systems Design 25CS423: Operating Systems Design

• Initialize data structure

– void cdev_init(struct cdev *cdev, struct file_operations *fops);

• Add to the kernel

– int cdev_add(struct cdev *dev, dev_t dev, unsigned int count);

• Delete from the kernel

– void cdev_del(struct cdev *dev);

Character Device Driver

CS 423: Operating Systems Design 26CS423: Operating Systems Design

static int my_open(struct inode *inode, struct file *filp);

static struct file_operations my_fops = {

.open = my_open,

.release = my_release,

.mmap = my_mmap,

.owner = THIS_MODULE,

};

Character Device Driver

CS 423: Operating Systems Design 27CS423: Operating Systems Design

• Gets Page Frame Number

– pfn = vmalloc_to_pfn(virt_addr);

• Maps a virtual page to a physical frame

– remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED);

(see http://www.makelinux.net/ldd3/chp-15-sect-2)

Memory Map

CS 423: Operating Systems Design 28CS423: Operating Systems Design

• Office hours

• Piazza

More Questions?

