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• Understand the Linux virtual to physical page mapping 

and page fault rate.

• Design a lightweight tool that can profile page fault rate.

• Implement the profiler tool as a Linux kernel module.

• Learn how to use the kernel-level APIs for character 

devices, vmalloc(), and mmap().

Purpose of MP3
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• Performance gap between memory and disk

– Registers: ~1ns

– DRAM: 50-150ns

– Disk: ~10ms, hundreds times slower than memory!

• Performance of the virtual memory system plays a major 

role in the overall performance of the Operating System

• Inefficient VM replacement of pages

– Bad performance for user-level programs 

– Increasing the response time

– Lowering the throughput 

Introduction
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• Page Fault is a trap to the software raised by the 

hardware when:

– A program accesses a page that is mapped in the Virtual 

address space but not loaded in the Physical memory

• In general, OS tries to handle the page fault by bringing 

the required page into physical memory.

• The hardware that detects a Page Fault is the Memory 

Management Unit of the processor

• However, if there is an exception (e.g. illegal access like 

accessing null pointer) that needs to be handled, OS 

takes care of that

Page Fault
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• Major page fault

– Handled by using a disk I/O operation

– Memory mapped file

– Page replacement / Cold Pages

– Expensive as they add to disk latency 

• Minor page fault

– Handled without using a disk I/O operation

– malloc(), copy_on_write(), fork()

Page Fault
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• Major Page Fault are much more expensive. How much?

– HDD average rotational latency : 3ms

– HDD average seek time: 5ms

– Transfer time from HDD: 0.05ms/page

• Total time for bringing in a page = 8ms= 8,000,000ns

– Memory access time: 200ns

– Thus, Major Page Fault is 40,000 times slower 

Effect of Page Fault on System 
Performance
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Metric
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Thrashing
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• Accuracy of Measurement 

– Many profiling operations are needed in a short time interval.

• Copy to user space causes a significant performance 

overhead

• Solution: Use Shared Memory

Measurement
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• A character device driver is used as a control interface of 

the shared memory

– Map Shared Memory (i.e., mmap()): To map the profiler buffer 

memory allocated in the kernel address space to the virtual 

address space of a requesting user-level process 

• Shared memory

– Normal memory access: Used to deliver profiled data from the 

kernel to user processes

Char Device and Shared Memory
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• Three types interfaces between the OS kernel module 

and user processes:

– a Proc file

– a character device driver

– a shared memory area

Interface of Kernel Module
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• Proc filesystem entry (/proc/mp3/status)

– Register: Application to notify its intent to monitor its page fault 

rate and utilization. 

• ‘R <PID>’

– Deregister: Application to notify that the application has finished 

using the profiler.

• ‘U <PID>’

– Read Registered Task List: To query which applications are 

registered.

• Return a list with the PID of each application 

Proc File System
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• Work program (given for case studies)

– A single threaded user-level application with three parameters: 

memory size, locality pattern, and memory access count per 

iteration

• Allocates a request size of virtual memory space (e.g., up to 1GB)

• Accesses them with a certain locality pattern (i.e., random or 

temporal locality) for a requested number of times

• The access step is repeated for 20 times.

– Multiple instances of this program can be created (i.e., forked) 

simultaneously.

Workload
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• Monitor application is also given

– Requests the kernel module to map the kernel-level profiler 

buffer to its user-level virtual address space (i.e., using mmap()).

• This request is sent by using the character device driver created by 

the kernel module.

– The application reads profiling values (i.e., major and minor page 

fault counts and utilization of all registered processes). 

– By using a pipe, the profiled data is stored in a regular file.

• So that these data are plotted and analyzed later.

Monitoring Program
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• It is common in kernel code to defer part of the work

• E.g. Interrupt handler code

– Some or all interrupts are disabled when handling it

– While handling one, we might lose new interrupts

– So, make the handling as fast as possible

– Top half

– Bottom half

• Better performance because :

– quick response to interrupts

– by deferring non-time-sensitive part of the work to later

Deferring Work
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• Bottom-half mechanism used to defer work

• Work queues run in process context.

– Work queues can sleep, invoke the scheduler, and so on.

– The kernel schedules bottom halves running in work queues.

• The work queue execute user’s bottom half as a specific 

function, called a work queue handler or simply a work 

function.

• Linux provides a common work queue but you can also 

initialize your own

Work Queue
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• In order to create a work queue, you need to:

– Call the create_workqueue() function 

– Which returns a workqueue_struct reference 

– struct workqueue_struct *create_workqueue( name );

• It can later be destroyed by calling the 

destroy_workqueue() function

– void destroy_workqueue( struct workqueue_struct * );

Creating/Destroying a Work Queue
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• The work to be added to the queue is

– Defined by struct work_Struct

– Initialized by calling the INIT_WORK() function

– INIT_WORK( struct work_struct *work, func );

• Now that the work is initialized, it can be added to the 

work queue by calling one of the following:

– int queue_work( struct workqueue_struct *wq, struct work_struct 

*work );

– int queue_delayed_work(struct workqueue_struct *wq, struct 

work_struct *work, unsigned long delay);

Creating/Destroying a Work Queue
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• Flush_work(): to flush a particular work and block until 

the work is complete

– int flush_work( struct work_struct *work );

• Flush_workqueue(): similar to flush_work() but for the 

whole work queue

– int flush_workqueue( struct workqueue_struct *wq );

Creating/Destroying a Work Queue
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• Cancel_work(): to cancel a work that is not already 

executing in a handler

– The function will terminate the work in the queue 

– Or block until the callback is finished (if the work is already in 

progress in the handler)

– int cancel_work_sync( struct work_struct *work );

• Work_Pending(): to find out whether a work item is 

pending or not

– work_pending( work );

Creating/Destroying a Work Queue
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• Initialize data structure

– void cdev_init(struct cdev *cdev, struct file_operations *fops);

• Add to the kernel

– int cdev_add(struct cdev *dev, dev_t dev, unsigned int count);

• Delete from the kernel

– void cdev_del(struct cdev *dev);

Character Device Driver
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static int my_open(struct inode *inode, struct file *filp);

static struct file_operations my_fops = {

.open = my_open,  

.release = my_release,

.mmap = my_mmap,

.owner = THIS_MODULE,

};

Character Device Driver
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• Gets Page Frame Number

– pfn = vmalloc_to_pfn(virt_addr);      

• Maps a virtual page to a physical frame

– remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED);

(see http://www.makelinux.net/ldd3/chp-15-sect-2)

Memory Map
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• Office hours

• Piazza

More Questions?


