CS 423
Operating System Design:
Virtualizing CPU and Memory

Tianyin Xu

The Simplest Idea

* To run a virtual machine on top of a hypervisor,
the basic technique that is used is limited direct
execution — when we wish to “boot” a new OS
on top of the VMM, we simply jump to the

address of the first instruction and let the OS
begin running.

 What are the problems you can think about?

CS 423: Operating Systems Design

Privileged Operations

 What if a running application or OS tries to
perform privileged operations?
 Update TLB (assuming a SW-managed TLB)
* (Guest) OSis no longer the boss anymore.

* VMM must somehow intercept attempts to
perform privileged operations and thus retain
control of the machine.

CS 423: Operating Systems Design

Privilegsed Operations

* Privileged Operations are supposed to be done
through System Calls

* Interrupt/trap
* Interrupt/trap handlers

* OS, when it is first starting up, establishes the
address of such a routine with the hardware.

CS 423: Operating Systems Design

Normal Case

Process Hardware Operating System
1. Execute instructions

(add, load, etc.)

2. System call:

Trap to OS

3. Switch to kernel mode;

Jump to trap handler
4, In kernel mode;
Handle system call;
Return from trap

5. Switch to user mode;

Return to user code

6. Resume execution

(@PC after trap)

CS 423: Operating Systems Design

Virtualized Case

 What should happen?
e VMM should controls the machine

* VMM should install a trap handler that will
first get executed in kernel mode.

* VMM need handle this system call?

* The VMM doesn’t really know how to handle
the call; after all, it does not know the details
of each OS that is running and therefore does
not know what each call should do.

CS 423: Operating Systems Design

How to handle System Call?

 What should happen?
e VMM should controls the machine

* VMM should install a trap handler that will
first get executed in kernel mode.

* VMM need handle this system call?

CS 423: Operating Systems Design

How to handle System Call? [(

e What the VMM does know, however, is where
the OS’s trap handler is.

 \When the OS booted up, it tried to install its
own trap handlers;

* [tis privileged, and therefore trapped into the
VMM;

* The VMM recorded the necessary information
(i.e., where this OS’s trap handlers are in
memory).

CS 423: Operating Systems Design

Process Operating System

1. System call:
Trap to OS

D

2. OS trap handler:

Decode trap and execute

appropriate syscall routine;

When done: return from trap
3. Resume execution

(@PC after trap)

Process Operating System VMM

1. System call:

Trap to OS
2. Process trapped:
Call OS trap handler
(at reduced privilege)

3. OS trap handler:

Decode trap and

execute syscall;

When done: issue

return-from-trap
4. OS tried return from trap:
Do real return from trap

5. Resume execution

m. (@PC after trap) -

How about protection?

* Normal Case

e Kernel mode

Least privileged

Ring 1

e User mode

Ring 0

Kernel

 Virtualized Case

. : Most privileged
Device drivers

e User mode

Device drivers

Applications

* Kernel mode
* Hypervisor mode

CS 423: Operating Systems Design

Virtualizing Memory

Virtual Address Space

CS 423: Operating Systems Design

OS Page Table

WN—=O

VPN 0 to PFN 10
VPN 2 to PFN 03
VPN 3 to PFN 08

VMM Page Table

PFN 03 to MFN 06
PFN 08 to MFN 10
PFN 10 to MFN 05

"Physical Memory"

CoOoONOORhWN—-O

10

Machine Memory

CoONOOOIPWN—=-O

A Recap of Virtual Memory 1

Process Operating System
1. Load from memory:
TLB miss: Trap

2. OS TLB miss handler:
Extract VPN from VA;
Do page table lookup;
If present and valid:
get PFN, update TLB;
Return from trap

3. Resume execution

(@PC of trapping instruction);

Instruction is retried;

Results in TLB hit

CS 423: Operating Systems Design

‘ Process Operating System

Virtual Machine Monitor

1. Load from mem
TLB miss: Trap

3. OS TLB miss handler:

Extract VPN from VA;
Do page table lookup;

If present and valid,
get PFN, update TLB

5. Return from trap

7. Resume execution
(@PC of instruction);
Instruction is retried;

I

2. VMM TLB miss handler:
Call into OS TLB handler
(reducing privilege)

4. Trap handler:
Unprivileged code trying
to update the TLB;

OS is trying to install
VPN-to-PEN mapping;
Update TLB instead with
VPN-to-MFEN (privileged);
Jump back to OS
(reducing privilege)

6. Trap handler:
Unprivileged code trying
to return from a trap;
Return from trap

m Results in TLB hit —

TLB miss handler?

* We have been assuming a software-managed
TLB — so the OS is handling TLB misses

 What about HW-managed TLBs (x86)?

* The hardware walks the page table on each
TLB miss and updates the TLB as need be, and
thus the VMM doesn’t have a chance to run
on each TLB miss to sneak its translation into
the system

CS 423: Operating Systems Design

Shadow Page Tables

* VMM must closely monitor changes the OS
makes to each page table and keep a shadow
page table that instead maps the virtual
addresses of each process to the VMM’s desired
machine pages.

CS 423: Operating Systems Design

Shadow Page Tables

* VMM maintains shadow page tables that map
guest virtual pages (V) directly to host physical
pages (GP).

* Guest modifications to V->GP tables synced to
VMM V->HP shadow page tables.

* Guest OS page tables marked as read-only.

 Modifications of page tables by guest OS ->
trapped to VMM.

 Shadow page tables synced to the guest OS
tables

CS 423: Operating Systems Design

Drawbacks: Shadow Page Tables][

 Need to handle trap on all page table updates (and
context switches)

* Processor moves from vmx non-root (guest mode) to vmx root (host mode)

* Similar to a CPU context switch, but actually more expensive

* Maintaining consistency between guest page tables and
shadow page tables leads to frequent traps if guest has
frequency switches or page table updates

* Loss of performance due to TLB flush on every “world-switch”

e Memory overhead due to shadow copying of guest page

tables

CS 423: Operating Systems Design

Nested Page [ables

 Extended page-table mechanism (EPT) used to support the
virtualization of physical memory.

* Guest-physical addresses are translated by traversing a set

of EPT paging structures to produce physical addresses
that are used to access memory.

 The hardware gives us a 2nd set of page tables to do
the translation without needing VMM intervention

* Of course, the VMM is still responsible for setting up the
EPT, but this generally only needs to be done once at
guest boot time

CS 423: Operating Systems Design

Address | ranslation

63 48 | 47 39 | 38 30|29 21|20 12 |11 0
sign ext.| idx4 idx 3 idx 2 idx 1 |offset
—> PTE
> PTE
> PTE [
| PTE ‘L
CR3 > >

Figure 1: Bare-metal radix page table walk.

63

02

ol

12

11

0

0’s padding

PPN

attributes

CS 423: Operating Systems Design

Table 1: Radix PTE structure.

Virtualized Address [ranslation][

nCR3

gCR3

CS 423: Operating Systems Design

Advantages: £P [

* Simplified VMM design (no need to maintain any

“shadow” state or complex software MMU structures)

* Guest page table modifications need not be trapped,
hence VM exits reduced.

e Reduced memory footprint compared to shadow
page table algorithms.

CS 423: Operating Systems Design

Disadvantages: £P |

 TLB miss is very costly since guest-physical address to
machine address needs an extra EPT walk for each stage

of guest-virtual address translation.

CS 423: Operating Systems Design

