°1 Walkthrough

9/13



Get Starter Code

* https://classroom.github.com/a/gFqT
4asl

* Find your name and click (don’t click
on other’s namel!)

« P.S. Don’t forget to submit your MPO!

Join the classroom:
uiuc cs423 fall22

To join the GitHub Classroom for this course, please select yourself
from the list below to associate your GitHub account with your
school’s identifier (i.e., your name, ID, or email).

Identifiers

Abhinav Pappu apappu2@illinois.edu

Adarsh Suresh adarshs3@illinois.edu

Akash Nambiar akashrn2@illinois.edu

Alexander Ding ading6@illinois.edu

Aman Khinvasara amantk2@illinois.edu

Andy Riddle rriddle2@illinois.edu

Anish Meka anishm2@illinois.edu

Arya Goel aryag2@illinois.edu

Ashna Arya  ashnaa2@illinois.edu

Ashwin Nimmal animmal2@illinois.edu

Bingchang Xu xu89@illinois.edu

Cay Zhang cz74@illinois.edu

Chang Li changli9@illinois.edu

Can't find your name? Skip to the next step -


https://classroom.github.com/a/gFqT4asI

Problem Description

* Write a kernel module that measures the Userspace CPU Time of
processes registered within the kernel module

* Register processes using PID through the Proc Filesystem

* Kernel module updates the userspace CPU time of each
registered process every bs

* Print the userspace CPU time of each registered process

Register PID MP1Write Proc

Callback

MP1Read Proc
Callback

List of (PID, CPU Time)

User Space

Kernel Space



Proc Filesystem

Not regular files, does not store data in binary format
Can be read/write as regular files

Create an entry (e.g. /proc/mpl/status) in the proc filesystem
* proc_mkdir()
* proc_create()

Register a process:
e echo “pid” > /proc/mpl/status
* Use fprintf(), etc.

Get userspace CPU time:
e cat /proc/mpl/status
* Use fgets(), etc.
* Should print in the following format:
<PID1>:[space]<CPU time of PID1(decimal)>\n

<PID2>:[space]<CPU time of PID2(decimal)>\n
(end)



Store States

* Implement read and write callback for the proc entry
e proc_read()
 proc_write()

* Use kernel linked list to store the information of every registered
Process
* APIsin <linux/1list.h>

* Need to consider concurrency for linked list operations
* E.g. using a lock



Update States

* Use a kernel timer to perform a task after a preset timeout
* APIsin <linux/timer.h>

* Setup timer
 timer_setup(timer, callback, flags)
* callback will be called after timeout fires

* Setup timeout

* Timeout Is represented In Jiffy in kernel. Jiffy can be converted between
regular time units (s, ms, etc.)

* mod _timer(timer, expires)
* expires is an absolute time (unit in Jiffy)

e Kernel timer I1s one-shot



Work Queue

* We are not going to put all the update work in the callback!
* Use a two-halves approach

* Use kernel work queue

* allow kernel functions to be activated (much like deferrable functions)
and later executed by special kernel threads

* APls in <linux/workgueue.h>

Register PID

MP1 Write
Proc Callback Linked List
(Critical Section)

< MP1 Read Proc
List of (PID,CPU Time) Callback

MP1 Test

Application

User Space Kernel Space



Work Queue

* Schedule a function to be run in a work queue
* queue_work(work queue, work)
* callback only calls queue_work() (Top-Half)
* work is where we are going to do the actual updates (Bottom-Half)

Register PID MP1 Write
Proc Callback Linked List

(Critical Section)
MP1 Read Proc

© Listof (PID,CPU Time) Callback

MP1 Test

Application

User Space Kernel Space



Other Things

* Access data in userspace

« E.g. ssize t proc_read(struct file *file, char _ user *buf,
size t size, loff t *loff)

* buf here is a userspace address and can’t be dereferenced directly in kernel
space

« Use copy_from_user() to copy to a kernel buffer
« Same for copy_to user()

* Free/deallocate any memory/objects before exiting the kernel
module
« Dynamic allocated memory using kmalloc() must be freed using kfree()
« Objects such as timer/work_queue must be destroyed
* Proc FS entry must be removed



Other Things

* Debug

* Use printk() to print to the kernel log
* View the kernel log using dmesg (e.g. dmesg | less)
* Works on any platform
* Sufficient for MP1 (from my experience)
* Use gdb
* Only works for those who use gemu

* A bit tricky to load the symbol table for kernel module. You can ask Jinghao/Siyuan
how to do that

* Submission
* Push your code to your GitHub repo before ddl



Demo



