
MP1 Walkthrough
9/13



Get Starter Code

• https://classroom.github.com/a/gFqT
4asI

• Find your name and click (don’t click 
on other’s name!)

• P.S. Don’t forget to submit your MP0!

https://classroom.github.com/a/gFqT4asI


Problem Description

• Write a kernel module that measures the Userspace CPU Time of 
processes registered within the kernel module

• Register processes using PID through the Proc Filesystem
• Kernel module updates the userspace CPU time of each 

registered process every 5s
• Print the userspace CPU time of each registered process



Proc Filesystem

• Not regular files, does not store data in binary format
• Can be read/write as regular files
• Create an entry (e.g. /proc/mp1/status) in the proc filesystem

• proc_mkdir()
• proc_create()

• Register a process:
• echo “pid” > /proc/mp1/status
• Use fprintf(), etc.

• Get userspace CPU time:
• cat /proc/mp1/status
• Use fgets(), etc.
• Should print in the following format:

<PID1>:[space]<CPU time of PID1(decimal)>\n
<PID2>:[space]<CPU time of PID2(decimal)>\n
(end)



Store States

• Implement read and write callback for the proc entry
• proc_read()
• proc_write()

• Use kernel linked list to store the information of every registered 
process
• APIs in <linux/list.h>

• Need to consider concurrency for linked list operations
• E.g. using a lock



Update States

• Use a kernel timer to perform a task after a preset timeout
• APIs in <linux/timer.h>

• Setup timer
• timer_setup(timer, callback, flags)
• callback will be called after timeout fires

• Setup timeout
• Timeout is represented in Jiffy in kernel. Jiffy can be converted between 

regular time units (s, ms, etc.)
• mod_timer(timer, expires)
• expires is an absolute time (unit in Jiffy)

• Kernel timer is one-shot



Work Queue

• We are not going to put all the update work in the callback!
• Use a two-halves approach
• Use kernel work queue
• allow kernel functions to be activated (much like deferrable functions) 

and later executed by special kernel threads
• APIs in <linux/workqueue.h>



Work Queue

• Schedule a function to be run in a work queue
• queue_work(work_queue, work)
• callback only calls queue_work() (Top-Half)
• work is where we are going to do the actual updates (Bottom-Half)



Other Things

• Access data in userspace
• E.g. ssize_t proc_read(struct file *file, char __user *buf, 
size_t size, loff_t *loff)

• buf here is a userspace address and can’t be dereferenced directly in kernel
space

• Use copy_from_user() to copy to a kernel buffer
• Same for copy_to_user()

• Free/deallocate any memory/objects before exiting the kernel
module
• Dynamic allocated memory using kmalloc() must be freed using kfree()
• Objects such as timer/work_queue must be destroyed
• Proc FS entry must be removed



Other Things

• Debug
• Use printk() to print to the kernel log

• View the kernel log using dmesg (e.g. dmesg | less)
• Works on any platform
• Sufficient for MP1 (from my experience)

• Use gdb
• Only works for those who use qemu
• A bit tricky to load the symbol table for kernel module. You can ask Jinghao/Siyuan

how to do that

• Submission
• Push your code to your GitHub repo before ddl



Demo


