CS 423

Operating System Design:

The Programming Interface
Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

A Brief note on Threading I

.+ Why should an application use multiple threads?
+ Things suitable for threading

- Block for potentially long waits

+ Use many CPU cycles

- Respond to asynchronous events

- Execute functions of different importance

- Execute parallel code

CS 423: Operating Systems Design

A Brief note on Threading

Example: Word Processor

Four score and seven
years ago, our fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
so conceived and so
dedicated, can long
endure. We are met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who here gave their

lives that this nation
might live. 1t is
altogether fitting and
proper that we should
o this.

But, in a largersense,
we cannot dedicate, we
cannot consecrate we
cannot hallow this
gound. The bmave
men, living and dead,

who struggled here
have consecmted it, far
above our poor power
to add or detract. The
world will little note,
nor long remember,
what we say here, but
it can never forget
what they did here.

1t is for us the living,
mther, to be dedicated

here to the unfinished
work which they who
fought here have thus
far so nobly advanced.
1t is mther for vs to be
here dedicated to the
great task remaining
before ws, that from
these honored dead we
take increased devotion
to that cawse for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall mot have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the peaple

LL L1

|
1w |
h |
I
) |
i\
2 e |

Keyboard

L

J

‘\\,"

Kernel

D

isk

What if it the application was single-threaded?

CS 423: Operating Systems Design

A Brief note on Threading I

Example: Web Server

Web server process

+ 3

Dispatcher thread
,2 1 Worker thread
@ Y) > User
2 2 2 space
Web page cache
_

Kernel

Kernel space
Network
connection

What if it the application was single-threaded?

CS 423: Operating Systems Design

Common Multi-thread Software Architectures]

« Manager/worker
= a single thread, the manager assigns work to other

threads, the workers. Typically, the manager handles all
input and parcels out work to the other tasks

= Pipeline
= a task is broken into a series of sub-operations, each of
which is handled by a different thread. An automobile

assembly line best describes this model

« Peer
= Similar to the manager/worker model, but after the main

thread creates other threads, it participates in the work.

CS423: Operating Systems Design

User-level [hreads

« Advantages

« Fast Context Switching:
. User level threads are implemented using user level thread libraries,

rather than system calls, hence no call to OS and no interrupts to
kernel

- When a thread is finished running for the moment, it can call
thread_yield. This instruction (a) saves the thread information in
the thread table, and (b) calls the thread scheduler to pick another
thread to run.

. The procedure that saves the local thread state and the scheduler are
local procedures, hence no trap to kernel, no context switch, no
memory switch, and this makes the thread scheduling very fast.

= Customized Scheduling

CS423: Operating Systems Design

The Programming Interface! [

OS Runs on Multiple Platforms while presenting the same
Interface:

Application Software

Web Server Browser Slack Pop Mail

The POSIX Standard Specifies UNIX Interface

Operating System (machine independent part)

l l Machine specific part l

Network

Portable

Haldwa re

I!"““l
¢ \\.\\..nl‘ y: = oooo
NIV -

CS 423: Operating Systems Design /

APl I1s IP of OS

Compilers Web Servers Source Code Control
Databases Word Processing
Web Browsers Email | "
The Syscall APl is bridges

05 Lbrary diverse applications and
hardware in the system stack.

System Call
Interface

Portable Operating Slmllar 'I:O the |nternet PrOtOCO|

System Kernel

(IP)’s role in the network stack!
10Mbps/100Mbps/1Gbps Ethernet
802.11 a/b/g/n SCSI IDE
Graphics Accelerators LCD Screens

CS423: Operating Systems Design

Software Layers

Application call libraries...

Application Provided pre-compiled
Defined in headers

. .) Input to linker (compiler)
Libraries (e.g., stdio.h) | Invoked like functions
May be “resolved” when
program 1s loaded

Portable OS Layer

Machine-dependent layer

CS 423: Operating Systems Design

Software Layers

... libraries make OS system calls...

Application

Libraries (e.g., stdio.h)

Portable OS Layer [——

Machine-dependent layer

B

system calls (read, open..)
All “high-level” code

CS 423: Operating Systems Design

Software Layers

... system calls access drivers, machine-specific code, etc.

Application

Libraries (e.g., stdio.h) Bootstrap

System 1nitialization
Interrupt and exception

I/O device driver

Portable OS Layer Memory management
Kernel/user mode switching
Processor management

Machine-dependent layer

CS 423: Operating Systems Design

Some Important Syscall Families][

« Performing I/O
« Open, read, write, close

« Creating and managing processes
o fork, exec, wait

« Communicating between processes
« pipe, dup, select, connect

CS423: Operating Systems Design

Fxample Syscall Workflow I

read (fd, buffer, nbytes)

Address
OxFFFFFFFF

User space <

N

Kernel space <
(Operating system)

or

CS 423: Operating Systems Design

Return to caller

Trap to the kernel

5| Put code for read in register

10
4
Increment SP 11
~ Call read
3| Push fd
2| Push &buffer
1| Push nbytes
6
. 7 8 [Sys call
Dispatch 5 Ferdlar

;

Library
procedure
read

User program
calling read

Question

Is it possible to invoke a system call without libc?

#define GNU_ SOURCE yes.
#include <unistd.h>

#include <sys/syscall.h>

#include <sys/types.h>

#include <signal.h>

int
main(int argc, char *argv[])

{
pid t tid;

tid = syscall(SYS gettid);

CS423: Operating Systems Design

POSIX Syscalls for. ..

... file management:

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

CS 423: Operating Systems Design

POSIX Syscalls for. ..

... directory management:

Directory and file system management

Cali Description
s = mkdir(name, mode) Create a new directory
s = rmdir(name) Remove an empty directory
s = link(name1, name2) Create a new entry, name2, pointing to name1
s = unlink(name) Remove a directory entry
s = mount(special, name, flag) Mount a file system
s = umount(special) Unmount a file system

CS 423: Operating Systems Design

Open: more than meets the eye][

 UNIX file open is a Swiss Army knife:
— Open the file, return file descriptor
— Options:
e if file doesn’t exist, return an error

* If file doesn’t exist, create file and open it
* |f file does exist, return an error

* If file does exist, open file

* If file exists but isn’t empty, nix it then open
* If file exists but isn’t empty, return an error

CS423: Operating Systems Design

Shells... how do they work? | [[

A shell is a job control system
Allows programmer to create and manage a set of
programs to do some task
Windows, MacQOS, Linux all have shells

Example: Shell cmds to compile a C program
cc —c sourcefilel.c

cc —c sourcefile2.c
1d —o program sourcefilel.o \
sourcefile2.0

CS 423: Operating Systems Design

Shell Question

If the shell runs at
user-level, what
system calls does it
make to run each of

the programs?

CS423: Operating Systems Design

POSIX Syscalls for. ..

... process management:

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

S = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

UNIX fork — system call to create a copy of the current process, and start it running

No arguments!

CS 423: Operating Systems Design

UNIX Process Mgmt

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

CS423: Operating Systems Design

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

pid = fork();

if (pid == 0)
exec(...);

else
wait(pid);

main () {

implementing UNIX Fork 1

Steps to implement UNIX fork

— Create and initialize the process control block
(PCB) in the kernel

— Create a new address space

— Initialize the address space with a copy of the
entire contents of the address space of the parent

— Inherit the execution context of the parent (e.g.,
any open files)

— Inform the scheduler that the new process is
ready to run

CS423: Operating Systems Design

Implementing UNIX Exec 1

* Steps to implement UNIX exec
— Load the program into the current address space

— Copy arguments into memory in the address
space

— Initialize the hardware context to start execution
at start"

CS423: Operating Systems Design

Simple Shell Implementation | 1

char *prog, **args;
int child pid;

// Read and parse the input a line at a time

while (readAndParseCmdLine(&prog, &args)) {
child pid = fork(); // create a child process
1f (child pid == 0) {
exec (prog, args); // I'm the child process. Run program
// NOT REACHED
} else {
wait(child pid); // I'm the parent, wait for child

return 0;

CS423: Operating Systems Design

Process Memt Questions | |

 Can UNIX fork() return an error?

 Can UNIX exec() return an error?

* Can UNIX wait() ever return immediately?

CS423: Operating Systems Design

What about Windows? | [

Windows has CreateProcess

* System call to create a new process to run a
program

— Create and initialize the process control block (PCB) in
the kernel

— Create and initialize a new address space
— Load the program into the address space
— Copy arguments into memory in the address space

— Initialize the hardware context to start execution at
“start”

— Inform the scheduler that the new process is ready to
run

CS423: Operating Systems Design

VWhat about Windows!

Windows has CreateProcess

if (ICreateProcess(

NULL, // No module name (use command line)
argv[1], // Command line
NULL, // Process handle not inheritable

NULL, // Thread handle not inheritable
FALSE, // Set handle inheritance to FALSE

0, // No creation flags

NULL, // Use parent's environment block
NULL, // Use parent's starting directory
&si, // Pointer to STARTUPINFO structure

&pi) // Pointer to PROCESS INFORMATION structure

CS423: Operating Systems Design

HON)S

... miscellaneous tasks:

Syscalls for. ..

Miscellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

CS 423: Operating Systems Design

