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Discussion: Last Class
• Where is CPU State physically stored for active task?

• Registers!

• Program Counter is a register

• Segment Registers

• Code Segment

• Data Segment

• Stack Segment

• CPU has access to RAM and can save PC to stack 
before context switching.
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Process Control Block
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The state for processes that are not running on the CPU are 
maintained in the Process Control Block (PCB) data structure

Updated during 
context switch

An alternate PCB diagram
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Where We Are:
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The Hardware 
(CPU)

“Virtual” 
CPU

“Virtual” 
CPU

“Virtual” 
CPU

…

Context Switching
+ Scheduling

Last class, we discussed how context switches allow a 
single CPU to handle multiple tasks:

What’s missing from this picture?
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Where We Are:
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The Hardware 
(CPU)

“Virtual” 
CPU

…

Context Switching
+ Scheduling

“Virtual” 
CPU

“Virtual” 
CPU

External
Devices

Interrupt
HandlerInterrupt

HandlerInterrupt
Handler

Interrupts to drive scheduling decisions!

Interrupt handlers are also tasks that share the CPU.
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CTX Switch: Interrupt
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Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Handle Interrupt
- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)
- Resume prior task

Thread 
Control 
Block

Thread 
Control 
Block

Registers Registers
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How do we take interrupts safely??

• Interrupt Vector Table
• Where the processor looks for a handler
• Limited number of entry points into kernel
• Stored in RAM at a known address

• Atomic transfer of control
• Single instruction to change: 

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
• User program does not know interrupt occurred

7



CS423: Operating Systems Design

Interrupt Vector Table
Table set up by OS kernel; pointers to code to run on 

different events
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Interrupt Stack
• Per-processor, located in kernel (not user) memory

• Fun fact! Usually a process/thread has both a kernel 
and user stack

• Can the interrupt handler run on the stack of 
the interrupted user process?
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Interrupt Stack
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Hardware Interrupts
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■ Hardware generated:
■ Different I/O devices are connected to different 

physical lines (pins) of an “Interrupt controller”
■ Device hardware signals the corresponding line
■ Interrupt controller signals the CPU (by signaling the 

Interrupt pin and passing an interrupt number)
■ CPU saves return address after next instruction and 

jumps to corresponding interrupt handler 
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Why Hardware INTs?
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■ Hardware devices may need asynchronous and 
immediate service. For example:
■ Timer interrupt: Timers and time-dependent activities need 

to be updated with the passage of time at precise intervals
■ Network interrupt: The network card interrupts the CPU 

when data arrives from the network
■ I/O device interrupt: I/O devices (such as mouse and 

keyboard) issue hardware interrupts when they have input 
(e.g., a new character or mouse click)



CS 423: Operating Systems Design

Ex: Itanium 2 Pinout
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Ex: Itanium 2 Pinout
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LINTx — lines/pins for 
hardware interrupts.

In this case…

LINT0 — line for 
unmaskable interrupts

LINT1 — line for
maskable interrupts

Ex: Itanium 2 Pinout
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A Note on Multicore
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■ How are interrupts handled on multicore machines?
■ On x86 systems each CPU gets its own local Advanced 

Programmable Interrupt Controller (APIC). They are wired 
in a way that allows routing device interrupts to any 
selected local APIC.

■ The OS can program the APICs to determine which 
interrupts get routed to which CPUs.

■ The default (unless OS states otherwise) is to route all 
interrupts to processor 0
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Instruction Cycle
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HALT

START Fetch next 
instruction

Execute 
Instruction

How does interrupt handling change the instruction 
cycle?
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Instruction Cycle w/ INTs
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HALT

START Fetch next 
instruction

Execute 
Instruction

interrupts
disabled

Check for 
INT, init INT 

handler

Interrupt StageExecute StageFetch Stage

How does interrupt handling change the instruction 
cycle?
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Processing HW INT’s
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Hardware

Device controller or other
hardware issues an interrupt.

Processor finishes execution
of current instruction.

Processor signals
acknowledgment of interrupt.

Processor pushes PSW and
PC onto stack.

Software

Save remainder of state
information.

Process interrupt.

Restore process state
information.

Restore old PSW and PC.

Processor loads new PC value
based on interrupt.

Program Status Word (PSW) contains 
interrupt masks, privilege states, etc.
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Other Interrupts
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■ Software Interrupts:
■ Interrupts caused by the execution of a software 

instruction:
■ INT <interrupt_number>

■ Used by the system call interrupt()
■ Initiated by the running (user level) process
■ Cause current processing to be interrupted and 

transfers control to the corresponding interrupt 
handler in the kernel
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Other Interrupts
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■ Exceptions
■ Initiated by processor hardware itself
■ Example: divide by zero

■ Like a software interrupt, they cause a 
transfer of control to the kernel to handle the 
exception
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They’re all interrupts
• HW -> CPU -> Kernel:  Classic HW Interrupt 

• User -> Kernel: SW Interrupt

• CPU -> Kernel: Exception

• Interrupt Handlers used in all 3 scenarios

22
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INTs, Priorities, & Blocking
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■ Interrupts (as the name suggests) have the 
highest priority (compared to user and kernel 
threads) and therefore run first
■ What are the implications on regular program 

execution?
■ Must keep interrupt code short in order not to keep 

other processing stopped for a long time
■ Cannot block (regular processing does not resume until 

interrupt returns, so if the interrupt blocks in the middle 
the system “hangs”) 
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INTs, Priorities, & Blocking
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■ Can an interrupt handler use kmalloc()?
■ Can an interrupt handler write data to disk?
■ Can an interrupt handler use busy wait?
■ E.G. — while (!event) loop;
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Interrupt Masking
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Interrupt Handlers
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Designing an Interrupt Handler:
■ Since the interrupt handler must be minimal, all other 

processing related to the event that caused the 
interrupt must be deferred
■ Example: 

■ Network interrupt causes packet to be copied from network card
■ Other processing on the packet should be deferred until its time 

comes
■ The deferred portion of interrupt processing is called 

the “Bottom Half” 
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Bottom Halves

27

■ Method for deferring portion of interrupt processing
■ Globally serialized
■ When one bottom half is executing, no other bottom 

half can execute (even different type) on any CPU.
■ Obvious performance limitations; primarily available for 

legacy support.
■ Note: other mechanisms for deferred work are also 

sometimes referred to as bottom half mechanisms.
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soft_irq’s
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■ Handlers that, like bottom halves, must be statically 
defined/allocated in the Linux kernel at compile time.

■ A hardware interrupt handler (before returning) uses 
raise_softirq() to mark that a given soft_irq must execute 
deferred work

■ At a later time, when scheduling permits, the marked 
soft_irq handler is executed
■ When a hardware interrupt is finished
■ When a process makes a system call
■ When a new process is scheduled

■ Unlike bottom halves, softirqs are reentrant and can be 
executed concurrently on several CPUs
■ How to protect data??



CS 423: Operating Systems Design

soft_irq types
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■ HI_SOFTIRQ
■ TIMER_SOFTIRQ
■ NET_TX_SOFTRQ
■ NET_RX_SOFTIRQ
■ BLOCK_SOFTIRQ
■ TASKLET_SOFTIRQ
■ SCHED_SOFTIRQ
■ …
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soft_irq types
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■ HI_SOFTIRQ
■ TIMER_SOFTIRQ
■ NET_TX_SOFTRQ
■ NET_RX_SOFTIRQ
■ BLOCK_SOFTIRQ
■ TASKLET_SOFTIRQ
■ SCHED_SOFTIRQ
■ …
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Tasklets
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■ Another Deferred work mechanism multiplexed on top 
of soft_irq’s

■ Scheduled using
■ tasklet_schedule() 
■ tasklet_hi_schedule()

■ Typically, a tasklet is serialized with respect to itself.
■ Non-reentrant == easier to code
■ Different task lets can be executed concurrently on 

different CPUs.
■ Tasklets can be created or removed dynamically
■ Cannot sleep (cannot save their context)
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Work Queues
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■ A different mechanism for (non-interrupt) deferred work
■ Work deferred to its own thread
■ Does not run in interrupt concept

■ Can be scheduled together with other threads according to 
priorities set by a scheduling policy

■ Associated with its thread control block and hence can block 
(and save context)
■ DECLARE_WORK(name, void (*func)(void *), void *data);
■ INIT_WORK(struct work_struct *work, void (*func)(void *), void *data);
■ schedule_work(&work);


