
CS423: Operating Systems Design

Tianyin Xu

CS 423
Operating System Design:
The Kernel Abstraction

* Thanks for Prof. Adam Bates for the slides.



CS423: Operating Systems Design

Let’s do something fun.

2

Let’s start with some questions.



CS423: Operating Systems Design

Overview

3

Process concept
• A process is the OS abstraction for executing a 

program with limited privileges
Dual-mode operation: user vs. kernel
• Kernel-mode: execute with complete privileges
• User-mode: execute with fewer privileges

Safe control transfer
• How do we switch from one mode to the other?



CS423: Operating Systems Design

Process Abstraction

4

Process: an instance of a program that runs with limited 
rights on the machine
• Thread: a sequence of instructions within a process
• Potentially many threads per process (for now, 

assume 1:1)
• Address space: set of rights of a process
• Memory that the process can access
• Other permissions the process has (e.g., which 

system calls it can make, what files it can access)



CS 423: Operating Systems Design

Thought Experiment

5

How can we permit a 
process to execute with 
only limited privileges?



CS423: Operating Systems Design

Thought Experiment

6

How can we implement execution with limited privilege?
• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript and other interpreted 

languages



CS423: Operating Systems Design

Thought Experiment

7

How can we implement execution with limited privilege?
• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript and other interpreted 

languages

Ok… but how do we go faster?



CS423: Operating Systems Design

Thought Experiment

8

How can we implement execution with limited privilege?
• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript and other interpreted 

languages

Ok… but how do we go faster?
• Run the unprivileged code directly on the CPU!



CS423: Operating Systems Design

A Model of a CPU

9



CS423: Operating Systems Design

A CPU with Dual-Mode Operation

10



CS423: Operating Systems Design

HW Support for Dual-Mode

11

Privileged instructions
• Available to kernel
• Not available to user code

Limits on memory accesses
• To prevent user code from overwriting the kernel

Timer
• To regain control from a user program in a loop

Safe way to switch from user mode to kernel mode, 
and vice versa



CS423: Operating Systems Design

Privileged Instructions

12

Examples?

What should happen if a user program 
attempts to execute a privileged instruction?



CS423: Operating Systems Design

User->Kernel Switches

13

How/when do we switch from user to kernel mode?

1. Interrupts
• Triggered by timer and I/O devices

2. Exceptions
• Triggered by unexpected program behavior
• Or malicious behavior!

3. System calls (aka protected procedure call)
• Request by program for kernel to do some 

operation on its behalf
• Only limited # of very carefully coded entry points



CS 423: Operating Systems Design

Question

14

How does the OS know 
when a process is in an 
infinite loop?



CS423: Operating Systems Design

Hardware Timer

15

Hardware device that periodically interrupts the 
processor
• Returns control to the kernel handler
• Interrupt frequency set by the kernel

Not by user code!
• Interrupts can be temporarily deferred 

Not by user code! Interrupt deferral crucial for 
implementing mutual exclusion



CS423: Operating Systems Design

Kernel->User Switches

16

How/when do we switch from kernel to user mode?

1. New process/new thread start
• Jump to first instruction in program/thread

2. Return from interrupt, exception, system call
• Resume suspended execution (return to PC)

3. Process/thread context switch
• Resume some other process (return to PC)

4. User-level upcall (UNIX signal)
• Asynchronous notification to user program



CS 423: Operating Systems Design

CPU State

17

What is the CPU’s behavior defined by at any 
given moment?



CS 423: Operating Systems Design 18

Program 
Counter

Code 
Segment

Offset

Program instructions

What is the CPU’s behavior defined by at any 
given moment?

CPU State



CS 423: Operating Systems Design 19

Program 
Counter

Code 
Segment

Offset

Data 
Segment

Offset

Operand

Data 
Operand

Current
Instruction

OpCode

Program instructions Heap

What is the CPU’s behavior defined by at any 
given moment?

CPU State



CS 423: Operating Systems Design 20

Program 
Counter

Code 
Segment

Offset

Data 
Segment

Offset

Operand

Data 
Operand

Current
Instruction

OpCode

Stack 
Segment

Offset

Stack
Pointer

Program instructions Heap Stack

What is the CPU’s behavior defined by at any 
given moment?

CPU State



CS 423: Operating Systems Design 21

Program 
Counter

Code 
Segment

Offset

Data 
Segment

Offset

Operand

Data 
Operand

Current
Instruction

OpCode

Stack 
Segment

Offset

Stack
Pointer

Registers

Program instructions Heap Stack

What is the CPU’s behavior defined by at any 
given moment?

CPU State



CS 423: Operating Systems Design 22

Program 
Counter

Code 
Segment

Offset

Data 
Segment

Offset

Operand

Data 
Operand

Current
Instruction

OpCode

Stack 
Segment

Offset

Stack
Pointer

RegistersWhat defines the STATE of the CPU?

Program instructions Heap Stack

CPU State



CS 423: Operating Systems Design

What’s a ‘real’ CPU?

23

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Offset

Operand

Data 
Operand

Current
Instruction

OpCode

Stack 
Segment

Offset

Stack
Pointer

Stack

RegistersWhat’s the STATE of a real CPU?



CS 423: Operating Systems Design

The Context Switch

24

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers



CS 423: Operating Systems Design

Process Control Block

25

The state for processes that are not running on the CPU are 
maintained in the Process Control Block (PCB) data structure

Updated during 
context switch

An alternate PCB diagram



CS 423: Operating Systems Design

The Context Switch

26

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers



CS 423: Operating Systems Design

The Context Switch

27

Note: In thread context
switches, heap is not switched!

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

OperandOpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers

Registers



CS 423: Operating Systems Design

The Context Switch

28

Note: In thread context
switches, heap is not switched!

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

OperandOpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)Global 

Variables

Local 

Variables

Registers

Registers



CS 423: Operating Systems Design

Thread Context Switch

29

Note: In thread context
switches, heap is not switched!

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

OperandOpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)Global 

Variables

Local 

Variables

So who does the 
context switch, 
and when???

Registers

Registers



CS 423: Operating Systems Design

Thread Context Switch

30

Note: In thread context
switches, heap is not switched!

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

OperandOpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)Global 

Variables

Local 

Variables

Solution 1: 
An Interrupt

Registers

Registers



CS 423: Operating Systems Design

CTX Switch: Interrupt

31

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Running Thread
Registers Registers



CS 423: Operating Systems Design

CTX Switch: Interrupt

32

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Interrupt

Registers Registers



CS 423: Operating Systems Design

CTX Switch: Interrupt

33

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

Thread 
Control 
Block



CS 423: Operating Systems Design

CTX Switch: Interrupt

34

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread
- Load thread state from control block

Thread 
Control 
Block

Thread 
Control 
Block

Registers Registers



CS 423: Operating Systems Design

CTX Switch: Interrupt

35

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)Thread 

Control 
Block

Thread 
Control 
Block

Registers Registers



CS 423: Operating Systems Design

CTX Switch: Interrupt

36

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)Thread 

Control 
Block

Thread 
Control 
Block

Where does it return?

Registers Registers



CS 423: Operating Systems Design

CTX Switch: Interrupt

37

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Stack

Save PC on thread stack
Jump to Interrupt handler

Handler
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)Thread 

Control 
Block

Thread 
Control 
Block

Where does it return?

Registers Registers



CS423: Operating Systems Design

CTX Switch: Interrupt

38

What are some examples of context switches due to 
interrupts?

• Clock Interrupt: Task exceeds its time slice

• I/O Interrupt: Waiting processes may be 
preempted

• Memory Fault: CPU attempts to access a virtual 
memory address that is not in main memory. OS may 
resume execution of another process while retrieving 
the block, then moves process to ready state.



CS 423: Operating Systems Design

Thread Context Switch

40

Note: In thread context
switches, heap is not switched!

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

OperandOpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)Global 

Variables

Local 

Variables

Registers

Registers
Solution 2: 

Voluntary yield()



CS 423: Operating Systems Design

CTX Switch: Yield

41

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Running Thread



CS 423: Operating Systems Design

CTX Switch: Yield

42

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()



CS 423: Operating Systems Design

CTX Switch: Yield

43

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

Thread 
Control 
Block



CS 423: Operating Systems Design

CTX Switch: Yield

44

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread

Thread 
Control 
Block



CS 423: Operating Systems Design

CTX Switch: Yield

45

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread
- Load thread state from control block

Thread 
Control 
Block

Thread 
Control 
Block



CS 423: Operating Systems Design 46

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Save thread state in thread control block 
(SP, registers, segment pointers, …)

- Choose next thread
- Load thread state from control block
- Pop PC from thread stack (return from handler)Thread 

Control 
Block

Thread 
Control 
Block

CTX Switch: Yield



CS 423: Operating Systems Design 47

CTX Switch: Yield

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Choose next thread
- swapcontext()

Thread 
Control 
Block

Thread 
Control 
Block



CS 423: Operating Systems Design 48

Scheduler

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- Choose next thread
- swapcontext()

Thread 
Control 
Block

Thread 
Control 
Block

Where is the 
Scheduling Policy?



CS 423: Operating Systems Design 49

Scheduler

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Save PC on thread stack
Jump to yield() function

yield()
- NextThreadID = scheduler()
- swapcontext()

Thread 
Control 
Block

Thread 
Control 
Block

Where is the 
Scheduling Policy?

Maintains a sorted 
queue of ready 
threads 


