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Let’s do something fun.
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Let’s start with some questions.
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Overview

3

Process concept
• A process is the OS abstraction for executing a 

program with limited privileges
Dual-mode operation: user vs. kernel
• Kernel-mode: execute with complete privileges
• User-mode: execute with fewer privileges

Safe control transfer
• How do we switch from one mode to the other?
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Process Abstraction
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Process: an instance of a program that runs with limited 
rights on the machine
• Thread: a sequence of instructions within a process
• Potentially many threads per process (for now, 

assume 1:1)
• Address space: set of rights of a process
• Memory that the process can access
• Other permissions the process has (e.g., which 

system calls it can make, what files it can access)
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Thought Experiment

5

How can we permit a 
process to execute with 
only limited privileges?
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Thought Experiment
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How can we implement execution with limited privilege?
• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript and other interpreted 

languages
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Thought Experiment
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How can we implement execution with limited privilege?
• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript and other interpreted 

languages

Ok… but how do we go faster?
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Thought Experiment
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How can we implement execution with limited privilege?
• Execute each program instruction in a simulator
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Basic model in Javascript and other interpreted 

languages

Ok… but how do we go faster?
• Run the unprivileged code directly on the CPU!
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A Model of a CPU

9



CS423: Operating Systems Design

A CPU with Dual-Mode Operation
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HW Support for Dual-Mode
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Privileged instructions
• Available to kernel
• Not available to user code

Limits on memory accesses
• To prevent user code from overwriting the kernel

Timer
• To regain control from a user program in a loop

Safe way to switch from user mode to kernel mode, 
and vice versa
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Privileged Instructions
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Examples?

What should happen if a user program 
attempts to execute a privileged instruction?
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User->Kernel Switches
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How/when do we switch from user to kernel mode?

1. Interrupts
• Triggered by timer and I/O devices

2. Exceptions
• Triggered by unexpected program behavior
• Or malicious behavior!

3. System calls (aka protected procedure call)
• Request by program for kernel to do some 

operation on its behalf
• Only limited # of very carefully coded entry points
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Question
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How does the OS know 
when a process is in an 
infinite loop?
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Hardware Timer
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Hardware device that periodically interrupts the 
processor
• Returns control to the kernel handler
• Interrupt frequency set by the kernel

Not by user code!
• Interrupts can be temporarily deferred 

Not by user code! Interrupt deferral crucial for 
implementing mutual exclusion
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Kernel->User Switches
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How/when do we switch from kernel to user mode?

1. New process/new thread start
• Jump to first instruction in program/thread

2. Return from interrupt, exception, system call
• Resume suspended execution (return to PC)

3. Process/thread context switch
• Resume some other process (return to PC)

4. User-level upcall (UNIX signal)
• Asynchronous notification to user program
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CPU State
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What is the CPU’s behavior defined by at any 
given moment?
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What’s a ‘real’ CPU?
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The Context Switch
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Process Control Block
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The state for processes that are not running on the CPU are 
maintained in the Process Control Block (PCB) data structure

Updated during 
context switch

An alternate PCB diagram
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The Context Switch

26

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Heap

Data 
Segment

Operand

Data 
Operand

OpCode

Stack 
Segment

Stack
Pointer

Stack

Save State
(Context)

Load State
(Context)

Registers



CS 423: Operating Systems Design

The Context Switch
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Note: In thread context
switches, heap is not switched!
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The Context Switch
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Note: In thread context
switches, heap is not switched!
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Thread Context Switch
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Note: In thread context
switches, heap is not switched!
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Thread Context Switch
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Note: In thread context
switches, heap is not switched!
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CTX Switch: Interrupt
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CTX Switch: Interrupt
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CTX Switch: Interrupt
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CTX Switch: Interrupt
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CTX Switch: Interrupt
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CTX Switch: Interrupt
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CTX Switch: Interrupt
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CTX Switch: Interrupt

38

What are some examples of context switches due to 
interrupts?

• Clock Interrupt: Task exceeds its time slice

• I/O Interrupt: Waiting processes may be 
preempted

• Memory Fault: CPU attempts to access a virtual 
memory address that is not in main memory. OS may 
resume execution of another process while retrieving 
the block, then moves process to ready state.
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Thread Context Switch
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Note: In thread context
switches, heap is not switched!
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CTX Switch: Yield

41

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Program 
Counter

Program instructions

Code 
Segment

Offset

Stack 
Segment

Stack
Pointer

Registers

Stack

Running Thread



CS 423: Operating Systems Design

CTX Switch: Yield
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CTX Switch: Yield
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CTX Switch: Yield
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CTX Switch: Yield
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CTX Switch: Yield
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