CS 423
Operating System Design:
The Kernel Abstraction

Tianyin Xu

* Thanks for Prof. Adam Bates for the slides.

CS423: Operating Systems Design

Let's do something fun. |

Let’s start with some questions.

CS423: Operating Systems Design

Overview

Process concept
A process is the OS abstraction for executing a
program with limited privileges
Dual-mode operation: user vs. kernel
« Kernel-mode: execute with complete privileges
« User-mode: execute with fewer privileges
Safe control transfer
« How do we switch from one mode to the other?

CS423: Operating Systems Design

Process Abstraction [(

Process: an instance of a program that runs with limited
rights on the machine
« Thread: a sequence of instructions within a process
« Potentially many threads per process (for now,
assume 1:1)
« Address space: set of rights of a process
« Memory that the process can access
« Other permissions the process has (e.g., which
system calls it can make, what files it can access)

CS423: Operating Systems Design

[hought Experiment

How can we permit a
process to execute with
only limited privileges?

CS 423: Operating Systems Design

[hought Experiment I

How can we implement execution with limited privilege?
« Execute each program instruction in a simulator
o If the instruction is permitted, do the instruction

« Otherwise, stop the process
« Basic model in Javascript and other interpreted

languages

CS423: Operating Systems Design

[hought Experiment I

How can we implement execution with limited privilege?
« Execute each program instruction in a simulator
o If the instruction is permitted, do the instruction

« Otherwise, stop the process
« Basic model in Javascript and other interpreted

languages

Ok... but how do we go faster?

CS423: Operating Systems Design

[hought Experiment I

How can we implement execution with limited privilege?
« Execute each program instruction in a simulator
o If the instruction is permitted, do the instruction

« Otherwise, stop the process
« Basic model in Javascript and other interpreted

languages

Ok... but how do we go faster?
« Run the unprivileged code directly on the CPU!

CS423: Operating Systems Design

A Model of a CPU

Branch Address

NewPC | . | : cPU |- :

Program i
teeeeeccesccscscsssscnans > Select PC beccccccccccccccccccccccccccscccced g cccccsccccccccccscccccd) InStrUCtlons

Counter Fetch and
Execute {------ :

CS423: Operating Systems Design 9

A CPU with Dual-Mode Operation | [

Branch Address

--

L@ T : —.

""""""""""""""""" > Select PC f--eeeeeeemmrrrireiinieieiieeeeees Program teveeeeenneennennneesd Instructions
Handler PC -oeeeeess > Counter Fetch and
eeeed Execute |------ :

Select New Mode
Mode R | Mode |-eeeeeeeerenenens
opcode

CS423: Operating Systems Design

HW Support for Dual-Mode [(

Privileged instructions

« Available to kernel

« Not available to user code
Limits on memory accesses

« To prevent user code from overwriting the kernel
Timer

« To regain control from a user program in a loop

Safe way to switch from user mode to kernel mode,
and vice versa

CS423: Operating Systems Design

Privileged Instructions

Examples?

What should happen if a user program
attempts to execute a privileged instruction?

CS423: Operating Systems Design

User->Kernel Switches

How/when do we switch from user to kernel mode?

1. Interrupts
 Triggered by timer and I/O devices
2. EXxceptions
« Triggered by unexpected program behavior
« Or malicious behavior!
3. System calls (aka protected procedure call)
« Request by program for kernel to do some
operation on its behalf
« Only limited # of very carefully coded entry points

CS423: Operating Systems Design

Question

How does the OS know
when a process Is in an
infinite loop?

CS 423: Operating Systems Design

Haraware | imer

Hardware device that periodically interrupts the
pProcessor
e Returns control to the kernel handler
o Interrupt frequency set by the kernel
Not by user code!
e Interrupts can be temporarily deferred
Not by user code! Interrupt deferral crucial for
implementing mutual exclusion

CS423: Operating Systems Design

Kernel->User Switches

How/when do we switch from kernel to user mode?

1. New process/new thread start

e Jump to first instruction in program/thread
2. Return from interrupt, exception, system call

e Resume suspended execution (return to PC)
3. Process/thread context switch

e Resume some other process (return to PC)

4. User-level upcall (UNIX signal)
e Asynchronous notification to user program

CS423: Operating Systems Design

CPU State

What is the CPU’s behavior defined by at any
given moment?

CS 423: Operating Systems Design

CPU State

What is the CPU’s behavior defined by at any
given moment?

Code
Segment

Offset

Program
Counter

Program instructions

CS 423: Operating Systems Design

CPU State

What is the CPU’s behavior defined by at any

given moment?

Code Data — .
Segment Segment
Offset
Program
Counter

\j Offset

OpCode |Operand

Current
Instruction Data
Operand
Program instructions Heap

CS 423: Operating Systems Design

CPU State

What is the CPU’s behavior defined by at any

given moment?

Offset

Code
Segment

Program
Counter

Data — .
Segment

\j Offset

Program instructions

CS 423: Operating Systems Design

OpCode |Operand

Current

Instruction
Data
Operand

Heap

Stack — .
Segment

Offset

Stack

Pointer

Stack

CPU State

What is the CPU’s behavior defined by at any

given moment? Registers
Code Data — . Stack — .
Segment Segment Segment
Offset
Offset
Program
— Counter
Offset
/ : Stack
Pointer
OpCode |Operand
Current
Instruction Data
Operand
Program instructions Heap Stack

CS 423: Operating Systems Design

CPU State

What defines the STATE of the CPU?

Offset

Code
Segment

Program
Counter

Data —

Segment

\j Offset

Program instructions

CS 423: Operating Systems Design

OpCode |Operand

Current

Instruction
Data
Operand

Heap

Registers
Stack — .
Segment
Offset
Stack
Pointer
Stack

What's a ‘real’ CPU!

What’s the STATE of a real CPU?

Offset

Code
Segment

Program
Counter

Data
Segment

\j Offset

Program instructions

CS 423: Operating Systems Design

OpCode |Operand

Current

Instruction
Data
Operand

Heap

Registers
Stack
Segment
Offset
Stack
Pointer
Stack

The Context Switch

Registers
Load State
< Code Data > S - (Context)
Segment Segment Segment
Offset
rogram
%ounter /
Stack v
OpCode O\Jerand Pointer
Data L»
Operand Registers
Program instructions Heap Stack
< Code Data > »
Stack
Segment Segment Segment
Offset
rogram
v %ounter /
Save State " Stack —
OpCode Obperand Pointer
(Context) |
Data >
Operand
Program instructions Heap Stack

CS 423: Operating Systems Design

Process Control Block [|

The state for processes that are not running on the CPU are
maintained in the Process Control Block (PCB) data structure

Process Table

PID PCB
1

2

n

Process Control Block

Process Control Block

Process Control Block

Program counter

Updated during

Registers

Program counter

Registers

State

Priority

Address space

Open files

Other flags

Program counter

context switch

State

Registers

Priority

State

Address space

Priority

Address space

Open files

Open files

Other flags

|

process
state

Other flags

pointer

process number

program counter

registers

memory limits

list of open files

An alternate PCB diagram

CS 423: Operating Systems Design

The Context Switch

Registers
Load State
< Code Data > S - (Context)
Segment Segment Segment
Offset
rogram
%ounter /
Stack v
OpCode O\Jerand Pointer
Data L»
Operand Registers
Program instructions Heap Stack
< Code Data > »
Stack
Segment Segment Segment
Offset
rogram
v %ounter /
Save State " Stack —
OpCode Obperand Pointer
(Context) |
Data >
Operand
Program instructions Heap Stack

CS 423: Operating Systems Design

The Context Switch

Note: In thread context

switches, heap is not switched!
Registers
Load State
< Code > (COI’ItEXt)
Segment SET -
Segment
Offset
rogram Data L»
ounter Operand
Stack L» Heap v
OpCode O\)erand Pointer
Registers
Program instructions Stack
) Sec:::leent JELE I
9 Segment
Offset
rogram
v %ounter
Save State Stack —»|
OpCode O\Jerand Pointer
(Context)
Program instructions Stack

CS 423: Operating Systems Design

The Context Switch

Note: In thread context

switches, heap is not switched!
Registers
Load State
< Code > es (Co n tEXt)
Segment SET X
Segment “
Offset
rogram Data L»
ounter Operand
Stack L» Heap v
OpCode O\)erand Pointer
Registers
Program instructions Stack
< Code >
Segment JELE

Segment

Offset 55

. 2 S u‘@""

Save State \o Paint,
OpCode Operand ointer
(Context)

Program instructions Stack

CS 423: Operating Systems Design

Thread Context Switch | [

Note: In thread context

switches, heap is not switched!
Registers
Load State
Code - eS (CO“tEXt)

Stack g .

Sl Segment “
Offset
rogram / ata

ounter

Stack
OpCode _Operand Pointer

Registers

So who does the
context switch,
and when??? E

=i u‘@"’"

Stack —,
OpCode _Operand Pointer

Program instructions

Stack
Segment

Save State
(Context)

Program instructions Stack

CS 423: Operating Systems Design

Thread Context Switch | [

Note: In thread context

switches, heap is not switched!
Registers
Load State
« Code . eS (Context)

Segment ::ag(::ent ‘
Offset “

rogram Data L,

ounter Operand

Stack L» Heap v

OpCode O\Jerand

Solution 1:

Registers

Program instructions An I nte rru pt

A 4

Sec:::leent JELE
9 Segment

Offset 55

s S “‘@"’"

Save State \o Paint,
OpCode Operand ointer
(Context)

Program instructions Stack

CS 423: Operating Systems Design

=

()]
i
()}
o
o
g ____________
(-4

Interrupt

(]
-
Q
o
-
)
(-4

h
=

S
N
X
T
U

c
.00
%)
)
A
0
-
)
+-
(%)
>
)
00
E
IS
O
)
O
e
o
4
)
)

C X Switch: Interrupt

Registers

IIIIIIIIIIII '
=
@
(g
()
1
7]

Ii .IIIIIIII

Interrupt

Save PC on thread stack
Jump to Interrupt handler -

CS 423: Operating Systems Design

C T X Switch: Interrupt

Registers Registers
< Code > < Code >
) Stack . Stack
Segment Segment Segment Segment
Offset Offset
rogram rogram
Counter Counter
v v
Stack — Stack —
Pointer Pointer
Program instructions Stack Program instructions Stack
Save PC on thread stack standlezh { ctate in thread block
Jump to Interrupt handler - Save thread state in thread control bloc

/' (SP, registers, segment pointers, ...)

Thread
Control
Block

CS 423: Operating Systems Design

C T X Switch: Interrupt

Code
Segment

Offset

A

rogram
Counter

Program instructions

l

Save PC on thread stack
Jump to Interrupt handler

Thread
Control
Block

CS 423: Operating Systems Design

Registers Registers
Stack > N S engl: " Stack >
Segment Segment
Offset
rogram
Counter
v v
Stack — Stack —
Pointer Pointer
Stack Program instructions Stack
Handler

—_—

- Save thread state in thread control block

- (SP, registers, segment pointers, ...)
/ - Choose next thread
- Load thread state from control block

 \

Thread
Control
Block

C T X Switch: Interrupt

Code
Segment

Offset

A

rogram
Counter

Program instructions

l

Save PC on thread stack
Jump to Interrupt handler

Thread
Control
Block

CS 423: Operating Systems Design

Registers Registers
> < Code >
Stack ' b Stack g
Segment Segment Segment
Offset
rogram
Counter
Stack — | Stack —
Pointer Pointer
Stack Program instructions Stack
Handler
- Save thread state in thread control block
/' (SP, registers, segment pointers, ...)
- Choose next thread
- Load thread state from control block //\
- Pop PC from thread stack (return from handler) Thread
Control
Block

C T X Switch: Interrupt

Code
Segment

Offset

A

rogram
Counter

Program instructions

l

Save PC on thread stack
Jump to Interrupt handler

Thread
Control
Block

CS 423: Operating Systems Design

Registers Registers
> < Code >
Stack ' b Stack g
Segment Segment Segment
Offset
rogram
Counter
Stack — | Stack —
Pointer Pointer
Stack Program instructions Stack
Handler
- Save thread state in thread control block
/' (SP, registers, segment pointers, ...)
- Choose next thread
- Load thread state from control block //\
- Pop PC from thread stack (return from handler) Thread
Control
Block

Where does it return?

C T X Switch: Interrupt

Registers Registers
< Code > < Code >
) Stack i Stack
Segment Segment Segment Segment
Offset Offset
rogram rogram
Counter Counter
Stack L. Stack L»
Pointer Pointer
Program instructions Stack Program instructions Stack
Handler
Save PC on thread stack
Jump to Interrupt handler - Save thread state in thread control block
/' (SP, registers, segment pointers, ...)
- Choose next thread
- Load thread state from control block //\
Thread - Pop PC from thread stack (return from handler) Thread
Control Control
Block Block

Where does it return?

CS 423: Operating Systems Design

C T X Switch: Interrupt

What are some examples of context switches due to
interrupts!?

« Clock Interrupt: Task exceeds its time slice

« 170 Interrupt: Waiting processes may be
preempted

« Memory Fault: CPU attempts to access a virtual
memory address that is not in main memory. OS may
resume execution of another process while retrieving
the block, then moves process to ready state.

CS423: Operating Systems Design

Thread Context Switch | [

Note: In thread context

switches, heap is not switched!

Load State
eS (Context)

Registers

) SeC::I:nt Stack
9 Segment
Offset
rogram
ounter

OpCode O\Jerand

Program instructions

N

Save State
(Context)

Data —
Operand

v N
Stack —, Heap

Solution 2:

Registers

Voluntary yield()

A 4

Code Stack

Segment Segment
Offset 55

rogram \@6‘3
%ounter }l

Stack —,
OpCode _Operand Pointer

Program instructions Stack

CS 423: Operating Systems Design

C I X Switch: Yield

IIIIIIIIIIII '
=
@
(g
()
1
7]

CS 423: Operating Systems Design

C I X Switch: Yield

IIIIIIIIIIII '
=
@
(g
()
1
7]

Ii .IIIIIIII

yield()

Save PC on thread stack
Jump to yield() function -

CS 423: Operating Systems Design

CTX Switch: Yield

Stack
Segment

Stack L»

Pointer

Registers

A\ 4

Stack

Registers
< Code > < Code
) Stack g
Segment
Segment Segment 9
Offset Offset
rogram rogram
Counter Counter
v
Stack —,
Pointer
Program instructions Stack Program instructions
Save PC on thread stack yield()

Jump to yield() function

Thread
Control
Block

CS 423: Operating Systems Design

—_—

/

- Save thread state in thread control block
- (SP, registers, segment pointers, ...)

CTX Switch: Yield

Code
Segment

Offset

A

rogram
Counter

Program instructions

Registers

A\ 4

Stack

Segment

v
Stack —,

Pointer

Stack

Save PC on thread stack
Jump to yield() function

l

Thread
Control
Block

CS 423: Operating Systems Design

—_—

/

Code
Segment

Offset

A

rogram
Counter

Program instructions

Stack
Segment

Stack L»

Pointer

Registers

A\ 4

Stack

yield()

- Save thread state in thread control block
- (SP, registers, segment pointers, ...)
- Choose next thread

CTX Switch: Yield

Code
Segment

Offset

A

rogram
Counter

Program instructions

Save PC on thread stack
Jump to yield() function

l

Thread
Control
Block

CS 423: Operating Systems Design

Registers

A\ 4

Stack
Segment

Stack L»
Pointer

Stack

Registers
> ¥ Code
Stack Segment
Segment
Offset
rogram
Counter
v
Stack —,
Pointer
Stack Program instructions
yield()

- Save thread state in thread control block

- (SP, registers, segment pointers, ...)
/ - Choose next thread
- Load thread state from control block

 \

Thread
Control

Block

CTX Switch: Yield

Code
Segment

Offset

A

rogram
Counter

Program instructions

Save PC on thread stack
Jump to yield() function

l

Thread
Control
Block

CS 423: Operating Systems Design

Registers Registers
. < Code >
Stack ' b Stack g
Segment Segment Segment
Offset
rogram
Counter
Stack — | Stack —
Pointer Pointer
Stack Program instructions Stack
yield()
- Save thread state in thread control block
/' (SP, registers, segment pointers, ...)
- Choose next thread
- Load thread state from control block //\
- Pop PC from thread stack (return from handler) Thread
Control
Block

CTX Switch: Yield

Registers Registers
- Code > « Code %
) StaCk q ™ StaCk >
Segment Segment Segment e
Offset Offset
rogram rogram
Counter Counter
Stack L, Stack v
Pointer Pointer
Program instructions Stack Program instructions Stack
Save PC on thread stack yield()
Jump to yield() function _ . |- Choose next thread
/ - swapcontext() ‘\
Thread Thread
Control Control
Block Block

CS 423: Operating Systems Design

Scheduler

Code
Segment

Offset

A

rogram
Counter

Registers

A\ 4

Stack

Segment

A

=t Where is the

Code

Segment Stack
9 Segment
Offset
rogram
Counter

Scheduling Policy?

Stack L»
Pointer

I |

Program instructions

Registers

A\ 4

Stack

L |
Program instructions Stack
Save PC on thread stack yield()

Jump to yield() function

Thread
Control
Block

CS 423: Operating Systems Design

—_—

/

- Choose next thread

- swapcontext()

N

Thread
Control
Block

Scheduler

Registers Registers
< Code > < Code %
< Stack > B Stack -
Segment Segment Segment Segment
Offset Offset
rogram rogram
Counter Counter
Stack T Stack — |
2t Where is the v
Scheduling Policy?
L | ——— 7
Program instructions Stack Program instructions Stack
Save PC on thread stack yield() Maintains a sorted
Jump to yield() function — ?Vi:t;%Zi‘%D = scheduler() |- queue of ready
/ P ‘\\ threads
Thread Thread
Control Control
Block Block

CS 423: Operating Systems Design

