
CS423 Fall 2022

MP1: Introduction to Linux Kernel Programming

1 Goals and Overview

• In this Machine problem you will learn the basics of Linux Kernel Programming

• You will learn to create a Linux Kernel Module (LKM).

• You will use Timers in the Linux Kernel to schedule work

• You will use Workqueues to defer work through the use of the Two-Halves concept

• You will use the basics of the Linked Lists interface in the Linux Kernel to temporar-
ily store data in the kernel

• You will learn the basic of Concurrency and Locking in the Linux Kernel

• You will interface applications in the user space with your Kernel Module through
the Proc Filesystem

2 Introduction

Kernel Programming has some particularities that can make it more difficult to debug
and learn. In this section we will discuss a few of them.

The most important difference between kernel programming in Linux and Applica-
tion programming in the user space is the lack of Memory Protection. That is driver,
modules, and kernel threads all share the same memory address space. De-referencing
a pointer that contains the wrong memory location and writing to it can cause the whole
system to crash or corrupt important subsystems including filesystem and networking.

Another important difference is that in kernel programming, preemption is not
always available, that means that we can indefinitely hog the CPU or cause system-
wide deadlocks. This makes concurrency much more difficult to handle in the kernel,

1



Figure 1: Proc Filesystem Interface between Test Application and MP1 Kernel Module

than in user space. For example in kernel space we are responsible for ensuring that
interrupt handlers are as efficient as possible using the CPU for very little time.

Also another important issue is the lack of user space libraries. Glib, C++ Stan-
dard Library and other libraries reside in the user space and cannot be accessed in the
kernel. This limits what we can do and how do we implement it. Another important
difference is that Linux Kernel lacks from Floating-Point support. That is all the math
must be implemented using integers. Also files, signals or security descriptors are not
available.

Through the rest of the document and your implementation you will learn some of
the basic mechanisms, structures and designs common to many areas of Linux Kernel
Development. Please consult the recommended links and tutorials in the Refer-
ences Section of this document as those documents detail everything that you need
to implement this MP.

3 Problem Description

In this MP you will build a kernel module that measures the User Space CPU Time of
processes registered within the kernel module and a simple test case application that
requests this service. In a real scenario many applications might be using this function-
ality implemented by our new kernel module and therefore our module is designed to
support multiple applications/processes to register simultaneously.

The kernel module will allow processes to register themselves through the Proc
Filesystem. For each registered process, the kernel module should write to an entry in
the Proc Filesystem, the application’s User Space CPU Time (known also as user time).

2



The kernel module must keep these values in memory for each registered process and
update them every 5 seconds. Figure 1 shows the application interface with the kernel
module using the Proc filesystem.

The registration process must be implemented as follows: At the initialization of
your kernel module, it must create a directory entry within the Proc filesystem (e.g.
/proc/mp1). Inside this directory your kernel module must create a file entry (e.g.
/proc/mp1/status), readable and writable by anyone (mask 0666). Upon start of
a process (e.g. our test application), it will register itself by writing its PID to this entry
that you created. When a process reads from this entry, the kernel module must print
a list of all the registered PIDs in the system and its corresponding User Space CPU
Times. An example of the format your proc filesystem entry can use to print this list is
as follows:

PID1: CPU Time of PID1

PID2: CPU Time of PID2

Your kernel module implementation must store the PIDs and the CPU Time values
of each process in a Linked List using the implementation provided by the Linux ker-
nel. Part of the goals of this MP is that you learn to use this facility provided by the
kernel. Additionally, the CPU Time values of each process must be periodically up-
dated by using a Kernel Timer. However, you must use a technique called Two-Halves
approach. In this approach an interrupt is divided in two parts: Interrupt Handler (Top-
Half) and Thread performing the work (Bottom-Half). The slides on Linux Kernel
Programming, posted on compass explain this concept more in detail.

In our case the Top-Half will be the Timer Interrupt Handler, its sole purpose will
be to wake up the Bottom-Half. For the Bottom-Half we will use a work function in
a workqueue. A workqueue is a kernel mechanism that allows you to schedule the
execution of a function (work function) at a later time. A worker thread managed by
the kernel is responsible of the execution of each of the work functions scheduled in
the workqueue. In our MP, the work function will traverse the link list and update the
CPU Time values of each registered process.

It is acceptable for your work function to be scheduled even if there are no regis-
tered processes, however you might consider an implementation where the timer is not
scheduled if there are no registered processes. Figure 2 shows the architecture of the
kernel module you should implement, including the timer interrupt and the workqueue.

Finally, the kernel module will be responsible of freeing any resource that it allo-
cated during its execution. This includes stopping any work function pending, destroy-

3



Figure 2: MP1 Architecture Overview

ing any timer, workqueue or Proc filesystem entry created and freeing any allocated
memory.

As a test case you must implement a simple program that registers itself in the
kernel module using the proc filesystem and then calculates a series of factorial com-
putations. This computation can repeat or can be different. However, this program
should run for sufficient time to test your kernel module, sometime between 10 and 15
seconds should be sufficient. At the end of the computation the application must read
the proc file system entry containing the list of all the registered applications and its
corresponding CPU Times.

4 Implementation Challenges

In this MP you will find many challenges commonly found in Kernel Programming.
Some of these challenges are discussed below:

• During the registration process you will need to access data from the User Space.
Kernel and Applications both run in two separate memory spaces, so de-referencing
pointers containing data from the User Space is not possible. Instead you must use
the function copy_from_user() to copy the data into a buffer located in kernel mem-
ory. Similarly, when returning data through a pointer we must copy the data from the
kernel space into the user space using the function copy_to_user(). Common cases
where this might appear are in Proc filesystem callbacks and system calls.

4



• Another important challenge is the lack of libraries, instead the kernel provides
similar versions of this commonly used functions found in libraries. For example
malloc() is replaced with kmalloc(), printf() is replaced by printk(). Some other
handy functions implemented in the kernel are sprintf(), and sscanf(). This functions
are introduced in [2].

• Throughout your implementation, you will need to face different running contexts.
A context is the entity whom the kernel is running code on behalf of. In the Linux
kernel you will find 3 different contexts:

1. Kernel Context: Runs on behalf of the kernel itself. Example: Kernel Threads
and workqueues

2. ProcessContext: Runs on behalf of some process. Example: SystemCalls

3. InterruptContext: Runs on behalf of an interrupt. Example: TimerInterrupt

• The Linux kernel is a preemptible kernel. This means that all the contexts run
concurrently and can be interrupted from its execution at any time. You will need
to protect your data structures through the use of appropriate locks and prevent race
conditions wherever they appear. Please note that architectural reasons limit which
type of locks can be used for each context. For example, interrupt context code
cannot sleep and therefore semaphores will create a deadlock when used in this
case.

This sleeping restriction in interrupt context also prevents you from using various
functions that sleep during its execution. Many of these functions involve compli-
cated operations that require access to devices like printk(), functions that schedule pro-
cesses, copy data from and to the user space, and functions that allocate memory (e.g
kmalloc()). Some exceptions to this rule of thumb are the function wake_up_process()
and the function kmalloc() when used with special flags.

Due to all these challenges, we recommend you that you test your code often and
build in small increments. You can use the BUG_ON() macro to spot inconsistencies
and trigger a stack dump.

5 Implementation Overview

In this section we will briefly guide you through the implementation. Figure 2 shows
the architecture of MP1, showing the kernel module with its workqueue and timer and

5



also the proc filesystem all in the kernel space. In the user space you can see the test
application that you will also implement.

Step 1: The best way to start is by implementing an empty (’Hello World!’) Linux
Kernel Module.

Step 2: After this you should implement the Proc Filesystem entries (i.e /proc/mp1/
and /proc/mp1/status). Make sure that you implement the creation of these en-
tries in your module init function and the destruction in your module exit function.

At this point you should probably test your code. Compile the module and load it
in memory using insmod or modprobe. You should be able to see the proc filesystem
entries you created using ls. Now remove the module and check that the entries are
properly removed.

Step 3: The next step should be to implement the full registration, you will need
to declare and initialize a Linux kernel Linked List. The kernel provides macros and
functions to traverse the list, and insert and delete elements.

Step 4: You will also need to implement the callback functions for read and write
in the entry of the proc filesystem you created. Keep the format of the registration
string simple. It should be a decimal string able to be parsed by the kstrtoint

system call. We suggest that a user space application should be able to register itself by
simply writing the PID to the proc filesystem entry you created (e.g echo <pid> >

/proc/mp1/status). The callback functions will read and write data from and to
the user space so you need to use copy_from_user() and copy_to_user(). To
keep things simple, do not worry about adding support for page breaks in the reading
callback.

Step 5: At this point you should be able to write a simple user space application
that registers itself in the module. Your test application can use the function getpid()
to obtain its PID. You can open and write to the proc filesystem entry using fopen() and
fprintf(), or you can use sprintf() and the system() function to execute the string echo
<pid> > /proc/mp1/status in the command line.

Step 6: The next step should be to create a Linux Kernel Timer that wakes up
every 5 seconds. Timers in the kernel are single shot (i.e not periodic). Expiration
times for Timers in Linux are expressed in jiffies and they refer to an absolute time
since boot. Jiffy is a unit of time that expresses the number of clock ticks of the system
timer in Linux. The conversion between seconds and jiffies is system dependent and
can be done using the constant Hz. The global variable jiffies can be used to retrieve
the current time elapsed since boot expressed in jiffies.

Step 7: Next you will need to implement the work function. At the timer expi-
ration, the timer handler must use the workqueue API to schedule the work function

6



to be executed as soon as possible. To test your code you can use printk() to print to
the console every time the work function is executed by the workqueue worker thread.
You can see these messages by using the command dmesg in the command line. Also
please note that the workqueue API was updated for kernel 2.6.20 and newer, therefore
some documentation about workqueues on the internet might be outdated.

Step 8: Now, you will need to implement the updates to the CPU Times for
the processes in the Linked List. We have provided in the file mp1_given.h a helper
function int get_cpu_use(int pid, unsigned long* cpu_value) to
simplify this part. This function returns 0 if the value was successfully obtained and
returned through the parameter cpu_value, otherwise it returns -1. As part of the up-
date process, you will need to use locks to protect the Linked List and any other shared
variables accessed by the three contexts (kernel, process, interrupt context). The ad-
vantage of using a two half approach is that in most cases the locking will be placed
in the work function and not in the timer interrupt. If a registered process terminates,
get_cpu_use will return -1. In this case, the registered process should be removed
from the linked list.

Step 9: Finally you should check for memory leaks and make sure that everything
is properly deallocated before we exit the module. Please keep in mind that need to
stop any asynchronous entity running (e.g timers, thread, workqueues) before deallo-
cating memory structures. At this time, kernel module coding is finished. Now you
should be able to implement the factorial test application and have some additional
testing of your code.

6 Software Engineering

Your code should include comments where appropriate. It is not a good idea to repeat
what the function does using pseudo-code, but instead, provide a high-level overview of
the function including any preconditions and post-conditions of the algorithm. Some
functions might have as few as one line comments, while some others might have a
longer paragraph.

Also, your code must be split into small functions, even if these functions contain
no parameters. This is a common situation in kernel modules because most of the vari-
ables are declared as global, including but not limited to data structures, state variables,
locks, timers and threads.

An important problem in kernel code readability is to know if a function holds the
lock for a data structure or not, different conventions are usually used. A common

7



convention is to start the function with the character ’_’ if the function does not hold
the lock of a data structure.

In kernel coding, performance is a very important issue; usually the code uses
macros and preprocessor commands extensively. Proper use of macros and identifying
possible situations where they should be used is important in kernel programming.

Finally, in kernel programming, the use of the goto statement is a common prac-
tice. A good example of this, is the implementation of the Linux scheduler function
schedule(). In this case, the use of the goto statement improves readability and/or per-
formance. “Spaghetti code” is never a good practice.

7 Submission Instructions

Here are the steps to accept and submit your MP.

1) Open the link https://classroom.github.com/a/gFqT4asI and lo-
gin using your GitHub account.

2) Find your name in the student list and click it to accept the assignment. Please
double-check your name and email address before accepting the assignment (If
you choose other’s name by mistake, please contact TA).

3) A repo named uiuc-cs423-fall22/mp1-<your github id> will be
automatically created for you with the starter code in it.

4) Your kernel module must be compiled to mp1.ko, and your test application
must be compiled to userapp. Push your code to your repo before the deadline.
We will grade your last commit before the deadline.

5) Please also write a README file to briefly describe how you implement the
functionalities. e.g. how the user interacts with the kernel module with Proc File
System, how you store process information using kernel list, how you implement
periodical tasks using timer and workqueue, etc. If you have some special im-
plementation you think worth mentioning, please also include that. Don’t make
it too long, your description doesn’t need to be very detailed. Please upload the
README to your GitHub repo.

8



8 Grading Criteria

Criterion Points

Can we insert your module? 5

Does your user app function correctly? 5

Does proc read work correctly? 15

Does proc write work correctly? 15

Does the interrupt handler work correctly (incl. removing finished processes)? 15

Does your module correctly support multiple processes? 10

Is your critical region lock correctly implemented? 5

Does your module correctly free all memory? 10

Can we remove your module (rmmod)? 5

Documented code and README file 5

Your code compiles and runs correctly and does not use any Floating Point arithmetic. 5

Your code is well commented, readable and follows software engineering principles. 5

Total 100

9 Deadline

Please refer to the course website for the official deadline for this assignment.

10 References

1. The Kernel Newbie Corner: Kernel Debugging Using proc "Sequence" Files
https://www.linux.com/learn/linux-training/37985-the-kernel-newbie-corner-kernel-
debugging-using-proc-qsequenceq-files-part-1
http://www.linux.com/learn/linux-career-center/39972-kernel-debugging-with-proc-
qsequenceq-files-part-2-of-3
http://www.linux.com/learn/linux-career-center/44184-the-kernel-newbie-corner-
kernel- debugging-with-proc-qsequenceq-files-part-3

2. The Linux Kernel Module Programming Guide (a little outdated, but still useful)
http://tldp.org/LDP/lkmpg/2.6/html/index.html

3. Linux Kernel Linked List Explained
http://isis.poly.edu/kulesh/stuff/src/klist/

9



4. Kernel API’s Part 3: Timers and lists in the 2.6 kernel
http://www.ibm.com/developerworks/linux/library/l-timers-list/

5. Access the Linux Kernel using the Proc Filesystem, (a little outdated, still useful)
http://www.ibm.com/developerworks/linux/library/l-proc/index.html

6. Kernel APIs Part2: Deferrable functions, kernel tasklets, and work queues
http://www.ibm.com/developerworks/linux/library/l-tasklets/index.html

7. Love Robert, Linux Kernel Development, Chapters 6, 8-11, 17-18, Addison-
Wesley Professional, Third Edition

8. Linux synchronization methods (2.6 kernel)
http://www.makelinux.net/ldd3/chp-5-sect-3
http://www.makelinux.net/ldd3/chp-5-sect-5

10


